This study mainly considers the scheduling problems with learning effects, where the learning rate is a random variable and obeys a uniform distribution. In the first part, we introduce a single machine model with location-based learning effects. We have given the theoretical proof of the optimal solution for the five objective functions. In the second part, we study the problem with group technology. Both intra-group and inter-group have location-based learning effects, and the learning rate of intra-group jobs follows a uniform distribution. We also give the optimal ranking method and proof for the two problems proposed.
Citation: Dingyu Wang, Chunming Ye. Single machine and group scheduling with random learning rates[J]. AIMS Mathematics, 2023, 8(8): 19427-19441. doi: 10.3934/math.2023991
This study mainly considers the scheduling problems with learning effects, where the learning rate is a random variable and obeys a uniform distribution. In the first part, we introduce a single machine model with location-based learning effects. We have given the theoretical proof of the optimal solution for the five objective functions. In the second part, we study the problem with group technology. Both intra-group and inter-group have location-based learning effects, and the learning rate of intra-group jobs follows a uniform distribution. We also give the optimal ranking method and proof for the two problems proposed.
[1] | D. Biskup, Single-machines scheduling with learning considerations, Eur. J. Oper. Res., 115 (1999), 173–178. https://doi.org/10.1016/S0377-2217(98)00246-X doi: 10.1016/S0377-2217(98)00246-X |
[2] | G. Moshiov, Scheduling problems with a learning effect, Eur. J. Oper. Res., 132 (2001), 687–693. https://doi.org/10.1016/S0377-2217(00)00175-2 doi: 10.1016/S0377-2217(00)00175-2 |
[3] | G. Moshiov, Parallel machine scheduling with a learning effect, J. Oper. Res. Soc., 52 (2001), 1165–1169. https://doi.org/10.1057/palgrave.jors.2601215 doi: 10.1057/palgrave.jors.2601215 |
[4] | G. Mosheiov, J. B. Sidney, Scheduling with general job-dependent learning curves, Eur. J. Oper. Res., 147 (2003), 665–670. https://doi.org/10.1016/S0377-2217(02)00358-2 doi: 10.1016/S0377-2217(02)00358-2 |
[5] | G. Mosheiov, J. B. Sidney, Note on scheduling with general learning curves to minimize the number of tardy jobs, J. Oper. Res. Soc., 56 (2005), 110–112. https://doi.org/10.1057/palgrave.jors.2601809 doi: 10.1057/palgrave.jors.2601809 |
[6] | A. Bachman, A. Janiak, Scheduling jobs with position-dependent processing times, J. Oper. Res. Soc., 55 (2004), 257–264. https://doi.org/10.1057/palgrave.jors.2601689 doi: 10.1057/palgrave.jors.2601689 |
[7] | W. C. Lee, C. C. Wu, H. J. Sung, A bi-criterion single-machine scheduling problem with learning considerations, Acta Inform., 40 (2004), 303–315. https://doi.org/10.1007/s00236-003-0132-9 doi: 10.1007/s00236-003-0132-9 |
[8] | W. C. Lee, C. C. Wu, Minimizing total completion time in a two-machine flowshop with a learning effect, Int. J. Prod. Econ., 88 (2004), 85–93. https://doi.org/10.1016/S0925-5273(03)00179-8 doi: 10.1016/S0925-5273(03)00179-8 |
[9] | A. Janiak, R. Rudek, Complexity results for single-machine scheduling with positional learning effects, J. Oper. Res. Soc., 59 (2008), 1430. https://doi.org/10.1057/palgrave.jors.2602622 doi: 10.1057/palgrave.jors.2602622 |
[10] | C. L. Zhao, Q. L. Zhang, H. Y. Tang, Machine scheduling problems with a learning effect, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 11 (2004), 741–750. |
[11] | M. B. Cheng, S. J. Sun, Y. Yu, A note on flow shop scheduling problems with a learning effect on no-idle dominant machines, Appl. Math. Comput., 184 (2007), 945–949. https://doi.org/10.1016/j.amc.2006.05.206 doi: 10.1016/j.amc.2006.05.206 |
[12] | T. Eren, E. Güner, Minimizing total tardiness in a scheduling problem with a learning effect, Appl. Math. Model., 31 (2007), 1351–1361. https://doi.org/10.1016/j.apm.2006.03.030 doi: 10.1016/j.apm.2006.03.030 |
[13] | X. G. Zhang, G. L. Yan, Single-machine scheduling problems with a sum-of-processing-time-based learning function, Int. J. Comb., 2009 (2009), 1–8. https://doi.org/10.1155/2009/624108 doi: 10.1155/2009/624108 |
[14] | X. G. Zhang, G. L. Yan, W. Z. Huang, G. C. Tang, A note on machine scheduling with sum-of-logarithm-processing-time-based and position-based learning effects, Inform. Sci., 187 (2012), 298–304. https://doi.org/10.1016/j.ins.2011.11.001 doi: 10.1016/j.ins.2011.11.001 |
[15] | J. B. Liu, X. F. Pan, Minimizing Kirchhoff index among graphs with a given vertex bipartiteness, Appl. Math. Comput., 291 (2016), 84–88. https://doi.org/10.1016/j.amc.2016.06.017 doi: 10.1016/j.amc.2016.06.017 |
[16] | J. B. Liu, Y. Bao, W. T. Zheng, Analyses of some structural properties on a class of hierarchical scale-free networks, Fractals, 30 (2022), 2250136. https://doi.org/10.1142/S0218348X22501365 doi: 10.1142/S0218348X22501365 |
[17] | M. L. Pinedo, Scheduling: theory, algorithms and systems, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-26580-3 |
[18] | M. Pinedo, E. Rammouz, A note on stochastic machine scheduling subject to breakdown and repair, Probab. Eng. Inform. Sci., 2 (1988), 41–49. https://doi.org/10.1017/S0269964800000619 doi: 10.1017/S0269964800000619 |
[19] | J. B. G. Frenk, A general framework for stochastic one-machine scheduling problems with zero release times and no partial ordering, Probab. Eng. Inform. Sci., 5 (1991), 297–315. https://doi.org/10.1017/S0269964800002102 doi: 10.1017/S0269964800002102 |
[20] | Y. B. Zhang, X. Y. Wu, X. Zhou, Stochastic scheduling problems with general position-based learning effects and stochastic breakdowns, J. Sched., 16 (2013), 331–336. https://doi.org/10.1007/s10951-012-0306-9 doi: 10.1007/s10951-012-0306-9 |
[21] | M. Ji, X. Y. Tang, X. Zhang, T. C. E. Cheng, Machine scheduling with deteriorating jobs and DeJong's learning effect, Comput. Indust. Eng., 91 (2016), 42–47. https://doi.org/10.1016/j.cie.2015.10.015 doi: 10.1016/j.cie.2015.10.015 |
[22] | S. J. Qin, S. X. Liu, H. B. Kuang, Piecewise linear model for multiskilled workforce scheduling problems considering learning effect and project quality, Math. Probl. Eng., 2016 (2016), 1–11. https://doi.org/10.1155/2016/3728934 doi: 10.1155/2016/3728934 |
[23] | X. Zhang, Y. Wang, S. K. Bai, Single-machine group scheduling problems with deteriorating and learning effect, Int. J. Syst. Sci., 47 (2016), 2402–2410. https://doi.org/10.1080/00207721.2014.998739 doi: 10.1080/00207721.2014.998739 |
[24] | J. Y. Xu, C. C. Wu, Y. Q. Yin, C. L. Zhao, Y. T. Chiou, W. C. Lin, An order scheduling problem with position-based learning effect, Int. J. Syst. Sci., 74 (2016), 175–186. https://doi.org/10.1016/j.cor.2016.04.021 doi: 10.1016/j.cor.2016.04.021 |
[25] | Y. B. Wu, J. J. Wang, Single-machine scheduling with truncated sum-of-processing-times-based learning effect including proportional delivery times, Neural Comput. Appl., 27 (2016), 937–943. https://doi.org/10.1007/s00521-015-1910-3 doi: 10.1007/s00521-015-1910-3 |
[26] | J. L. Vile, J. W. Gillard, P. R. Harper, V. A. Knight, Time-dependent stochastic methods for managing and scheduling emergency medical services, Oper. Res. Health Care, 8 (2016), 42–52. https://doi.org/10.1016/j.orhc.2015.07.002 doi: 10.1016/j.orhc.2015.07.002 |
[27] | O. Souissi, R. Benmansour, A. Artiba, An accelerated MIP model for the single machine scheduling with preventive maintenance, IFAC, 49 (2016), 1945–1949. https://doi.org/10.1016/j.ifacol.2016.07.915 doi: 10.1016/j.ifacol.2016.07.915 |
[28] | J. B. Liu, J. Zhao, J. Min, J. D. Cao, The Hosoya index of graphs formed by a fractal graph, Fractals, 27 (2019), 1950135. https://doi.org/10.1142/S0218348X19501354 doi: 10.1142/S0218348X19501354 |
[29] | J. B. Liu, C. X. Wang, S. H. Wang, B. Wei, Zagreb indices and multiplicative Zagreb indices of Eulerian graphs, Bull. Malays. Math. Sci. Soc., 42 (2019), 67–78. https://doi.org/10.1007/s40840-017-0463-2 doi: 10.1007/s40840-017-0463-2 |
[30] | H. T. Li, Stochastic single-machine scheduling with learning effect, IEEE Trans. Eng. Manag., 64 (2017), 94–102. https://doi.org/10.1109/TEM.2016.2618764 doi: 10.1109/TEM.2016.2618764 |
[31] | M. D. Toksari, B. Atalay, Some scheduling problems with job rejection and a learning effect, Comput. J., 66 (2023), 866–872. https://doi.org/10.1093/comjnl/bxab201 doi: 10.1093/comjnl/bxab201 |
[32] | J. C. Chen, Y. Y. Chen, T. L. Chen, Y. H. Lin, Multi-project scheduling with multi-skilled workforce assignment considering uncertainty and learning effect for large-scale equipment manufacturer, Comput. Indust. Eng., 169 (2022), 108240. https://doi.org/10.1016/j.cie.2022.108240 doi: 10.1016/j.cie.2022.108240 |
[33] | Y. Shi, S. Mahdian, J. Blanchet, P. Glynn, A. Y. Shin, D. Scheinker, Surgical scheduling via optimization and machine learning with long-tailed data, Health Care Manag. Sci., 2022, In press. |
[34] | J. B. Wang, X. Jia, J. X. Yan, S. H. Wang, J. Qian, Single machine group scheduling problem with makespan objective and a proportional linear shortening, RAIRO Oper. Res., 56 (2022), 1523–1532. https://doi.org/10.1051/ro/2022078 doi: 10.1051/ro/2022078 |
[35] | I. Ham, K. Hitomi, T. Yoshida, Group technology: applications to production management, Kluwer-Nijhoff Publishing, 1985. https://doi.org/10.1007/978-94-009-4976-8 |
[36] | W. C. Lee, C. C. Wu, A note on single-machine group scheduling problems with position-based learning effect, Appl. Math. Model., 33 (2009), 2159–2163. https://doi.org/10.1016/j.apm.2008.05.020 doi: 10.1016/j.apm.2008.05.020 |
[37] | W. H. Yang, S. Chand, Learning and forgetting effects on a group schedeuling problem, Eur. J. Oper. Res., 187 (2008), 1033–1044. https://doi.org/10.1016/j.ejor.2006.03.065 doi: 10.1016/j.ejor.2006.03.065 |
[38] | X. G. Zhang, G. L. Yan, Single-machine group scheduling problems with deteriorated and learning effect, Appl. Math. Comput., 216 (2010), 1259–1266. https://doi.org/10.1016/j.amc.2010.02.018 doi: 10.1016/j.amc.2010.02.018 |
[39] | W. M. Ma, L. Sun, L. Ning, N. N. Lin, Group scheduling with deterioration and exponential learning effect processing times, Syst. Eng. Theory Pract., 37 (2017), 205–211. |
[40] | L. Sun, L. Ning, J. Z. Huo, Group scheduling problems with time-dependent and position-dependent Dejong's learning effect, Math. Probl. Eng., 2020 (2020), 1–8. https://doi.org/10.1155/2020/5161872 doi: 10.1155/2020/5161872 |
[41] | J. B. Liu, Y. Bao, W. T. Zheng, S. Hayat, Network coherence analysis on a family of nested weighted $n$-polygon networks, Fractals, 29 (2021), 2150260. https://doi.org/10.1142/S0218348X21502601 doi: 10.1142/S0218348X21502601 |
[42] | W. X. Li, C. L. Zhao, Single machine scheduling problem with multiple due windows assignment in a group technology, J. Appl. Math. Comput., 48 (2015), 477–494. https://doi.org/10.1007/s12190-014-0814-1 doi: 10.1007/s12190-014-0814-1 |
[43] | X. X. Liang, M. Q. Liu, Y. B. Feng, J. B. Wang, L. S. Wen, Solution algorithms for single-machine resource allocation scheduling with deteriorating jobs and group technology, Eng. Optim., 52 (2020), 1184–1197. https://doi.org/10.1080/0305215X.2019.1638920 doi: 10.1080/0305215X.2019.1638920 |
[44] | L. Y. Wang, M. Q. Liu, J. B. Wang, Y. Y. Lu, W. W. Liu, Optimization for due-date assignment single-machine scheduling under group technology, Complexity, 2021 (2021), 1–9. https://doi.org/10.1155/2021/6656261 doi: 10.1155/2021/6656261 |
[45] | D. Y. Wang, C. M. Ye, Group scheduling with learning effect and random processing time, J. Math., 2021 (2021), 1–6. https://doi.org/10.1155/2021/6685149 doi: 10.1155/2021/6685149 |
[46] | A. Jain, A. Jain, An approach for optimisation of flexible flow shop group scheduling with sequence dependent set-up time and preventive maintenance, Int. J. Comput. Aided Eng. Technol., 16 (2022), 40–66. https://doi.org/10.1504/IJCAET.2022.119537 doi: 10.1504/IJCAET.2022.119537 |