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Abstract: This study mainly considers the scheduling problems with learning effects, where the
learning rate is a random variable and obeys a uniform distribution. In the first part, we introduce a
single machine model with location-based learning effects. We have given the theoretical proof of the
optimal solution for the five objective functions. In the second part, we study the problem with group
technology. Both intra-group and inter-group have location-based learning effects, and the learning
rate of intra-group jobs follows a uniform distribution. We also give the optimal ranking method and
proof for the two problems proposed.
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1. Introduction

Research on single machine scheduling problems with location-based learning effects has long been
the focus of scholars. Early pioneering research can be found in Biskup [1] and Moshiov [2]. In their
research, they assumed that the processing time of the job was constant and a decreasing function of
its position respectively. Moshiov [3] described the parallel machine case. Mosheiov and Sidney [4]
introduced job-dependent learning effects and thought that the problem could be transformed into an
allocation problem. Since then, many scholars have studied similar or improved models. There are
many related achievements, and the research perspective is becoming more and more open. Mosheiov
and Sidney [5] studied the case that all tasks have a common due date, and proved that the model
is polynomial solvable. Bachman and Janiak [6] provided a method of proof using diagrams. Lee,
Wu and Sung [7] discussed the two-criteria problem, and put forward the skills of searching for the
optimal solution. The authors followed the methods of the non-increasing order of ω j and the shortest
processing time sequence achieves the optimal solution. Lee and Wu [8] solved a flow shop scheduling
problem with two machines using a heuristic algorithm. Janiak and Rudek [9] discussed the complexity
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results of a single machine scheduling problem that minimizes the number of delayed jobs. Zhao,
Zhang and Tang [10] investigated the polynomial solutions of some single machine problems, parallel
machine problems, and flow shop problems in environments with learning effects. Cheng, Sun and
Yu [11] considered some permutation flow shop scheduling problems with a learning effect on no-idle
dominant machines. Eren and Ertan [12] studied the problem of minimizing the total delay in the case
of learning effects, and used the 0-1 integer programming model to solve this problem. Zhang and
Yan [13], Zhang et al. [14], Liu and Pan [15] and Liu, Bao and Zheng [16] have all studied scheduling
problems based on learning effects from the perspective of problem model innovation or improvement.

With the deepening of research, many scholars found that p is not always a constant and there
will be different processing times in different environments, different machines or different workers.
Therefore, some scholars put forward the stochastic scheduling problem. Pinedo and Rammouz [17],
Frenk [18] and Zhang, Wu and Zhou [19] have done a lot of pioneering work. Based on research results
of the above scholars, Zhang, Wu and Zhou [20] studied the single machine stochastic scheduling
problem based on the learning effect of location, and studied the optimal scheduling strategy for
stochastic scheduling problems with and without machine failures. Ji et al. [21] considered the parallel
machine scheduling caused by job degradation and the learning effect of DeJong. They proved that
the proposed problem is polynomial solvable, and provided a fully polynomial time approximation
solution. A labor scheduling model with learning effect is proposed by Qin, Liu and Kuang [22]. By
piecewise linearizing the curve, the mixed 0-1 nonlinear programming model (MNLP) was transformed
into the mixed 0-1 linear programming model (MLP) for solution. Zhang, Wang and Bai [23] proposed
a group scheduling model with both degradation and learning effects. Xu et al. [24] proposed a
multi machine order scheduling problem with learning effect, and use simulated annealing and particle
swarm optimization to obtain a near optimal solution. Wu and Wang [25] consider a single machine
scheduling problem with learning effects based on processing time and truncation of job delivery times
related to past sequences. Vile et al. [26], Souiss, Benmansour and Artiba [27], Liu et al. [28] and
Liu et al. [29] applied scheduling models separately to emergency medical services, supply chain,
manufacturing management and graph theory. Li [30] studied the processing time of the job as random
and uses a job-based learning rate. At the same time, he provided a method to deal with problems
by using the difference between EVPI and EVwPI. Toksari and Atalay [31] studied four problems
of the coexistence of learning effect and homework refusal. In order to reduce production costs,
Chen et al. [32] focused on multi-project scheduling and multi-skilled labor allocation. Shi et al. [33]
applied a machine learning model to medical treatment, estimate service level and its probability
distribution, and used various optimization models to solve scheduling programs. Wang et al. [34]
improved and studied several existing problems.

Ham, Hitomi and Yoshida [35] first proposed the “group technology” (GT). According to type or
characteristics, jobs are divided into different groups. Each group of jobs is produced by the same
means and, once the jobs are put into production, they cannot be stopped. Lee and Wu [36] proposed
a group scheduling learning model where the learning effect not only depends on the work location,
but also on the group location. We have demonstrated that the problem is polynomial solvable under
the proposed model. Yang and Chand [37] studied a single machine group scheduling problem with
learning and forgetting effects to minimize the total completion time of tasks. Zhang and Yan [38]
proposes a group scheduling model with deterioration and learning effects. Under the proposed
model, the completion time and total completion time problems are polynomial optimal solvable.
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Similarly, Ma et al. [39], Sun et al. [40] and Liu et al. [41] provided appropriate improvements
to the model. Li and Zhao [42] considered the group scheduling problem on a single machine with
multiple expiration window assignments. They also divided the homework into several groups to
improve production efficiency and save resources. However, this work is only an improvement on
some problems or solutions and has not achieved groundbreaking results. Liang [43] inquired into
the model with deteriorating jobs under GT to minimize the weighted sum of manufacturing time
and resource allocation costs. Wang et al. [44] considered the issue of maturity allocation and group
technology at the same time. They determined the best sequence and the best deadline allocation of
the group and intra-group jobs by minimizing the weighted sum of the absolute values of the lateness
and deadline allocation costs. Wang and Ye [45] established a stochastic grouping scheduling model.
Based on SDST and preventive maintenance, Jain [46] proposed a method based on a genetic algorithm
to minimize the performance measurement of completion time.

The above literature provides assistance in establishing problem models and solving methods for
classical sorting and random sorting with learning effects. In the learning effect, the learning factor is
a very important quantity which often affects the actual processing time of the job. There are many
factors that affect learning factors, which can be internal or external and often have randomness. In this
case, the learning factor is no longer a constant–it is variable–and sometimes the probability density
can be calculated. These aspects were not considered in previous works. Therefore, the discussion
of the randomness of learning factors in this study has practical significance. Based on the above
ideas, this study establishes a new stochastic scheduling model. In the model, workers participate
in production, the processing of jobs has a position based learning effect and the learning index is
random. The method to solve the problem is to use heuristic algorithms to find the optimal seqencing
of the problems.

2. Scheduling problem with stochastic learning rate: single machine

n independent jobs are processed on one machine. The job can be processed at any time and cannot
be stopped during processing.

First model is

1
∣∣∣∣pr

j = p jr−a j , a j ∼ U
(
0, λ j

)∣∣∣∣ E
[
f
(
C j

)]
,

where f
(
C j

)
is function of processing time of job J j.

First, we give some lemmas.

Lemma 2.1. [16] X is a random variable, continuous on the definition field, and fX (x) is density
function, Y = g (X), there is E (Y) = E

[
g (X)

]
=

∫ +∞
−∞

g (x) fX (x) dx.

Lemma 2.2. [16] The meaning of X is the same as Lemma 2.1, function g (x) is everywhere derivable
and monotonous, Y = g (X), then,

fY (y) =
{

fX
[
h (y)

]
· |h′ (y)| ,

0,
α < y < β,
others,

(2.1)

in which α, β is the minimum and maximum value of g (−∞) , g (+∞) respectively, h (y) = g−1 (x).
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Lemma 2.3. When x > 1, y (x) = 1
ln x

(
1 − 1

x

)
is monotonic and does not increase, z (x) = 1− 1

ln x

(
1 − 1

x

)
is a monotone increasing function, and z (x) > 0.

It is easy to prove the conclusion by using the method of derivation and function limit.

Lemma 2.4. If the random variable a ∼ U (0, λ), X = pr−a, where p is constant, then fX (x) = 1
λ
· 1

x ln r .

Proof. From (2.1), when a ∼ U (0, λ), we can get X ∈
(
pr−λ, p

)
, and

fX (x) = fX [h (a)] · |h (a)| =
1
λ
·

∣∣∣∣∣∣
(
ln p − ln x

ln r

)′∣∣∣∣∣∣ = 1
λ
·

1
x ln r

. (2.2)

□

Second, we give the symbols and their meanings in the theorems (see Table 1).

Table 1. The symbols and their meanings.

Symbol Description

J A collection of independent jobs
J j A job in J
r Job position in the sequenc
a Learning rate, a > 0
ωi Weight of job i
p j The p of J j, p j ∼ U

(
0, λ j

)
S , S ′ Job sequence
di The due date of Ji

Lmax Maximum delay
T j Delay of job J j

U j Penalty of job j
pr

i (S ) Random processing time when Ji in S is r-position
π1, π2 Jobs without Ji, J j in the sequence
E (·) Mathematical expectation of random variable
t0 Completion time in the sequence except for Ji, J j

t0
′ Time required for the (r − 1)-th job in the sequence to finish processing

C j (S ) Time spent on completion of J j in S∑
ω jC j Weighted completion time when all jobs are processed

Theorem 2.1. For 1
∣∣∣∣pr

j = p jr−a j , a j ∼ U
(
0, λ j

)∣∣∣∣ E (Cmax), if p is consistent with the parameters λ, that
is, for all Ji, J j, if there is pi ≤ p j ⇒ λi ≤ λ j, if the λ is large, arrange it first, we can obtain the optimal
ranking of the problem.

Proof. (1) There is the first job in the exchanged jobs, the job in the first and second positions is
exchanged.

According to hypothesis and Lemma 2.1, we have
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E [C2 (S )]=E (t0)+E
[
p1

1 (S )
]
+E

[
p2

2 (S )
]
= E (t0) + p1 +

p2

ln (2λ2)
·

(
1 −

1
2λ2

)
, (2.3)

E
[
C1

(
S ′

)]
=E (t0)+E

[
p1

2
(
S ′

)]
+E

[
p2

1
(
S ′

)]
= E (t0) + p2 +

p1

ln (2λ1)
·

(
1 −

1
2λ1

)
. (2.4)

Note that p1 ≤ p2 ⇒ λ1 ≤ λ2, 2λ2 > 2λ1 > 1, from Lemma 2.3, we can get

1
ln (2λ2)

·

(
1 −

1
2λ2

)
<

1
ln (2λ1)

·

(
1 −

1
2λ1

)
, 1 −

1
ln (2λ1)

(
1 −

1
2λ1

)
> 0. (2.5)

From (2.3)–(2.5), it can be obtained that

E [C2 (S )] − E
[
C1

(
S ′

)]
=p1 − p2 +

p2

ln (2λ2)
·

(
1 −

1
2λ2

)
−

p1

ln (2λ1)
·

(
1 −

1
2λ1

)
<p1 − p2 +

p2

ln (2λ1)
·

(
1 −

1
2λ1

)
−

p1

ln (2λ1)
·

(
1 −

1
2λ1

)
=

[
1 −

1
ln (2λ1)

·

(
1 −

1
2λ1

)]
· (p1 − p2) < 0.

(2) When there is no first job in the exchanged jobs, that is r ≥ 2. We compare E
[
C j (S )

]
of J j in S

with E [Ci (S ′)] of Ji in S ′.
From hypothesis and Lemma 2.1, we get

E
[
C j (S )

]
=E (t0)+E

[
pr

i (S )
]
+E

[
pr+1

j (S )
]

= E (t0)+E
[
pir−ai

]
+E

[
p j(r + 1)−a j

]
= E (t0) +

pi

ln r · λi

(
1 − r−λi

)
+

p j

ln (r + 1) · λ j

[
1 − (r + 1)−λ j

]
, (2.6)

E
[
Ci

(
S ′

)]
=E (t0)+E

[
pr

j
(
S ′

)]
+E

[
pr+1

i
(
S ′

)]
= E (t0)+E

[
p jr−ai

]
+E

[
pi(r + 1)−a j

]
= E (t0) +

p j

ln r · λi

(
1 − r−λi

)
+

pi

ln (r + 1) · λ j

[
1 − (r + 1)−λ j

]
. (2.7)

Notice the hypothesis of the Theorem 2.1, for all Ji, J j, if there is pi ≤ p j ⇒ λi ≤ λ j, and when
r ≥ 2, rλi > 1. From Lemmas 2.2, 2.3 and (2.6), (2.7), we get

E
[
C j (S )

]
− E

[
Ci

(
S ′

)]
=

 1
ln (rλi)

(
1 −

1
rλi

)
−

1

ln
[
(r + 1)λ j

] (
1 −

1
(r + 1)λ j

) · (pi − p j

)
< 0.

Proof complete. □
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Theorem 2.2. For model 1
∣∣∣∣pr

j = p jr−a j , a j ∼ U
(
0, λ j

)∣∣∣∣ E
(∑
ω jC j

)
, if p and its weight meet pi

p j
≤

min
{
1, ωi
ω j

}
, the optimal order is obtained by the larger λ jω j first.

Proof. Suppose pi ≤ p j, according to the previous assumptions, we have

E [Ci (S )] = E
(
t0
′) + E

[
pr

i
]
= E (t0) +

pi

ln r · λi

(
1 − r−λi

)
, (2.8)

E
[
C j (S )

]
= E

(
t0
′) + E

[
pr

i
]
+ E

[
pr+1

j

]
= E (t0) +

pi

ln r · λi
·
(
1 − r−λi

)
+

p j

ln (r + 1) · λ j
·
[
1 − (r + 1)−λ j

]
, (2.9)

E
[
C j

(
S ′

)]
= E

(
t0
′) + E

[
pr

j

]
= E (t0) +

p j

ln r · λi

(
1 − r−λi

)
, (2.10)

E
[
Ci

(
S ′

)]
= E

(
t0
′) + E

[
pr

j

]
+ E

[
pr+1

i

]
= E (t0) +

p j

ln r · λi
·
(
1 − r−λi

)
+

pi

ln (r + 1) · λ j
·
[
1 − (r + 1)−λ j

]
. (2.11)

Notice pi
p j
≤ min

{
1, ωi
ω j

}
, ω jλ j ≥ ωiλi and (2.8)–(2.11), we can get

ωiE [Ci (S )] + ω jE
[
C j (S )

]
− ωiE

[
Ci

(
S ′

)]
− ω jE

[
C j

(
S ′

)]
=

(
ωi + ω j

) (
pi − p j

)
·

1
ln r · λi

(
1 − r−λi

)
+

(
ω j p j − ωi pi

)
·

1
ln (r + 1) · λ j

·
[
1 − (r + 1)−λ j

]
≤

(
ωi + ω j

) (
pi − p j

)
·

1
ln r · λi

(
1 − r−λi

)
+

(
ω j p j − ωi pi

)
·

1
ln r · λi

(
1 − r−λi

)
=

(
ω j pi − ωi p j

)
·

1
ln r · λi

(
1 − r−λi

)
≤ 0.

Theorem 2.2 is proved. □

Theorem 2.3. When λi ≤ λ j ⇒ di ≤ d j for Ji, J j, the EDD rule, that is non-decreasing of d j is the
optimal algorithm of problem 1

∣∣∣∣pr
j = p jra, p j ∼ U

(
0, λ j

)∣∣∣∣ E (Lmax).

Proof. First, we consider λi ≤ λ j. The parameters of Ji, J j in S ′ satisfy the relationship λi ≤ λ j ⇒ di ≤

d j, but they violate the EDD rule, that is, J j is processed before Ji. In fact, Ji is processed before J j in S .
Then we prove that the sequence S ′ can be transformed into a non-decreasing of d j sequence S and
this transformation makes the maximum delay non-increasing. Further more, we suppose the last job
in π1 is on the (r − 1)-th position and the expected completion time of it is E (t0). From (2.8)–(2.11),
we get the expected delays of Ji, J j in sequence S are

E [Li (S )] = E [Ci (S )] − di = E (t0) +
1
2
λ jra +

1
2
λi(r + 1)a

− di, (2.12)
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E
[
L j (S )

]
= E

[
C j (S )

]
− d j = E (t0) +

1
2
λ jra − d j. (2.13)

Similarly, the expected delays of Ji, J j in sequence S ′ are

E
[
Li

(
S ′

)]
= E

[
Ci

(
S ′

)]
− di = E (t0) +

1
2
λira − di, (2.14)

E
[
L j

(
S ′

)]
= E

[
C j

(
S ′

)]
− d j = E (t0) +

1
2
λira +

1
2
λ j(r + 1)a

− d j. (2.15)

Because λi ≤ λ j, di ≤ d j and (2.12)–(2.15), so

E [Li (S )] − E
[
L j

(
S ′

)]
=

1
2

(
λ j − λi

)
·
[
ra − (r + 1)a] + (

d j − di

)
≥ 0, (2.16)

E
[
L j (S )

]
− E

[
Li

(
S ′

)]
=

1
2

(
λ j − λi

)
· ra +

1
2
λi · (r + 1)a > 0. (2.17)

Then from (2.16) and (2.17), we have

max
{
E [Li (S )] , E

[
L j (S )

]}
≤ max

{
E

[
Li

(
S ′

)]
, E

[
L j

(
S ′

)]}
. (2.18)

Thus, exchanging the position of Ji and J j does not cause an increase in the maximum delay. After
a limited number of similar processing, the optimal sequence can be transformed into the order of
non-decreasing of due time d j and the expected maximum delay will not increase. □

Theorem 2.4. For 1
∣∣∣∣pr

j = p jra, p j ∼ U
[
0, λ j

]∣∣∣∣ E
(∑

T j

)
, when λi ≤ λ j ⇒ di ≤ d j, we have the optimal

algorithm by non-decreasing order of d j.

Proof. First we assume di ≤ d j. The necessary condition for the theorem proof is the same as that of
Theorem 2.3. Now we show that exchanging the position of Ji and J j does not increase the objective
function value. Then we repeat the exchange of adjacent jobs to get the optimal sequence of problem.

We discuss it in two cases:
Case 1. E

[
C j (S ′)

]
≤ d j, in which E [Ti (S )] , 0, E

[
T j (S )

]
, 0. If one of them is zero, the

conclusion is obviously true.
From Theorem 2.3 and di ≤ d j, we have(

E
[
Ti

(
S ′

)]
+E

[
T j

(
S ′

)])
−

(
E [Ti (S )]+E

[
T j (S )

])
=max

{
E

[
Ci

(
S ′

)]
− di, 0

}
+max

{
E

[
C j

(
S ′

)]
− d j, 0

}
−max {E [Ci (S )] − di, 0} - max

{
E

[
C j (S )

]
− d j, 0

}
=E

[
Ci

(
S ′

)]
− E [Ci (S )] −

(
E

[
C j (S )

]
− d j

)
≥ 0. (2.19)

Case 2. E
[
C j (S ′)

]
> d j. Notice di ≤ d j, λi ≤ λ j, we have(

E
[
Ti

(
S ′

)]
+E

[
T j

(
S ′

)])
−

(
E [Ti (S )]+E

[
T j (S )

])
= E

[
Ci

(
S ′

)]
+E

[
C j

(
S ′

)]
− E [Ci (S )] − E

[
C j (S )

]
≥ 0. (2.20)

From (2.19) and (2.20), we get E [Ti (S )]+E
[
T j (S )

]
≤ E [Ti (S ′)]+E

[
T j (S ′)

]
. □
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In the following discussion, we assume that d j = d, j = 1, 2, · · · , n.

Theorem 2.5. For 1
∣∣∣∣pr

j = p jra, p j ∼ U
(
0, λ j,

)
di = d

∣∣∣∣ E
(∑
ω jU j

)
, there are the following results:

(1) When d − t > min (λ1, λ2), according to the non-decreasing order of λ j, we can get the smaller
number of expected weighted tardy jobs;

(2) When d − t < λ1, d − t < λ2, ω1 ≤ ω2 ⇒ d − t ≥ 2(λ2−λ1)
(r+1)a ·

ω1+ω2
ω1−ω2

+ ω1λ1−ω2λ2
ω1−ω2

, we can get the
minimum expected value of the objective function according to the non-decreasing rules of job weight.

Proof. (1) First we assume the machine is idle at time t and then there are two jobs J1, J2 without
processing. Suppose processing times of J1, J2 are p1 and p2, J1, J2 are processed at the r-th position
and (r+1)-th position respectively. The weights of J1, J2 are ω1 and ω2. When d − t > min (λ1, λ2), we
should process the job for which λ j is smaller first, so that we can guarantee the target value is smaller.

(2) In the following we assume ω1 ≤ ω2, d − t < λ1 and d − t < λ2.
Let E [

∑
ωU (1, 2)] denotes the expected weighted number of tardy jobs when we process J1 first

and then process J2, then

E
[∑
ωU (1, 2)

]
= (ω1+ω2) · P

(
pi

1 > d − t
)
+ω2 · P

(
pi

2 < d − t, pi
2 + pi+1

1 > d − t
)

= (ω1+ω2) ·
∫ λ1

d−t
ia ·

1
λ1

dx + ω2 ·

∫ d−t

0
dx

∫ λ2

d−t−x

ia · (i + 1)a

λ1λ2
dy

= (ω1+ω2) · ia

[
1 −

1
λ1

(d − t)
]
+ω2 ·

ia · (i + 1)a

λ1λ2

[
λ2 (d − t) −

1
2

(d − t)2
]
. (2.21)

The meaning of E [
∑
ωU (2, 1)] is similar to E [

∑
ωU (1, 2)], then

E
[∑
ωU (2, 1)

]
= (ω1+ω2) · P

(
pi

2 > d − t
)
+ ω1 · P

(
pi

2 < d − t, pi
2 + pi+1

1 > d − t
)

= (ω1+ω2) ·
∫ λ2

d−t
ia ·

1
λ2

dx + ω1 ·

∫ d−t

0
dx

∫ λ1

d−t−x

ia · (i + 1)a

λ1λ2
dy

= (ω1+ω2) · ia

[
1 −

1
λ2

(d − t)
]
+

ia · (i + 1)a

λ1λ2

[
λ1 (d − t) −

1
2

(d − t)2
]
. (2.22)

According to (2.21) and (2.22), we obtain

E
[∑
ωU (1, 2)

]
− E

[∑
ωU (2, 1)

]
=

ra · (r + 1)a

2λ1λ2
(ω1 − ω2) (d − t)

[
(d − t) +

2 (λ1 − λ2)
(r + 1)a ·

ω1+ω2

ω1 − ω2
+
ω2λ2 − ω1λ1

ω1 − ω2

]
.

When condition (2) of the theorem is satisfied we can get E [
∑
ωU (1, 2)] < E [

∑
ωU (2, 1)] . The

proof of Theorem 2.5 is completed. □

3. The case of GT with random learning rate of job

Now, we will discuss the case of group scheduling. All jobs in the model can be processed at zero
time. In a group, the job can be worked continuously. The machine must have preparation time before
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entering the next group, and it is subject to the classical learning effect hypothesis. p is a random with
learning effect based on the position in the group, and the learning rate follows a uniform distribution.

Our model is expressed as

1
∣∣∣∣pk

i j = pi jk−ai j , ai j ∼ U
(
0, λi j

)
,G, sr

i = sir−a
∣∣∣∣ E

[
f
(
C j

)]
.

The assumptions and symbols of the model (see Table 2) are as follows:

Table 2. Symbols of the model.

Symbol Description

Gi The i-th group
ni Number of jobs in group Gi

n Number of total jobs, n1 + n2 + · · · + ni = n
Ji j The j-th job in group Gi, i = 1, 2, · · · ,m; j = 1, 2, · · · , ni

a Learning rate for group installation, a < 0
si Normal installation time of group Gi, i = 1, 2, · · · ,m
sr

i Actual installation time of group Gi in number r, sr
i=sira

ai j Learning rate of job j in group Gi, ai j > 0
pi j The random processing time of the job Ji j,

obeys the uniform distribution in the interval
(
0, λi j

)
pk

i j Random processing time of job Ji j in position k of group Gi j,
pk

i j = pi jkai j

Q,Q′ Job group sequence
σ1, σ2 Partial workpiece sequence
E

[
C jn j (Q)

]
Expected completion time of the last job of group G j in sequence Q

E
[
Cini (Q′)

]
Expected completion time of the last job of group Gi in sequence Q′

E (T0) Expected completion time of the last job of σ1

Theorem 3.1. For 1
∣∣∣∣pk

i j = pi jk−ai j , ai j ∼ U
(
0, λi j

)
,G, sr

i = sir−a
∣∣∣∣ E (Cmax), when the jobs in the group

satisfy: For all Jik, Jil, pik ≤ pil ⇒ λik ≤ λil, the internal parts of the group are in accordance with λik

large rule, the group is on the basis of the non-decreasing order of si, we can get the optimal solution.

Proof. Suppose si ≤ s j, and a > 0. We can get

E
[
C jn j (Q)

]
− E

[
Cin j

(
Q′

)]
= E (T0) + sir−a + E

 ni∑
k=1

pikk−aik

 + s j(r + 1)−a + E

 n j∑
k=1

p jkk−a jk


− E (T0) − s jr−a − E

 n j∑
k=1

p jkk−a jk

 − si(r + 1)−a
− E

 ni∑
k=1

pikk−aik


=

(
si − s j

)
·
[
r−a − (r + 1)−a] < 0.
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Then, we can get the sorting rules of the group by repeating the exchange operation.
The scheduling problem of jobs in a group can be summed up as

1
∣∣∣∣pk

i j = pi jk−ai j , ai j ∼ U
(
0, λi j

)∣∣∣∣ E (Cmax) ,

Theorem 2.1 has been proved.
We have completed the proof of Theorem 3.1. □

Theorem 3.2. For 1
∣∣∣∣pk

i j = pi jk−ai j , ai j ∼ U
(
0, λi j

)
,G, sr

i = sir−a
∣∣∣∣ E

(∑
C j

)
, if si

ni
≤

s j

n j
, the larger λi j of

the job in the group, the better the arrangement. The group is arranged by the non-decreasing order

of

ni∑
l,k=1

pik

ln
(
k
λi j

) ·(1− 1

k
λi j

)
ni

, we can get the optimal sort.

Proof. Assumptions are the same as Theorem 3.1.

And si
ni
≤

s j

n j
,

ni∑
l,k=1

pik
ln(kλik) ·

(
1− 1

kλik

)
ni

≤

n j∑
l,k=1

p jk

ln
(
k
λ jk

) ·(1− 1

k
λ jk

)
n j

, thenE

 ni∑
l=1

Cil (Q)

 + E

 n j∑
l=1

C jl (Q)


 −

E

 ni∑
l=1

Cil
(
Q′

) + E

 n j∑
l=1

C jl
(
Q′

)


= niE (t0) + nisir−a + E

 ni∑
k=1,l=1

(ni − l + 1) pilk−ail


+ n jE

[
Cini (Q)

]
+ n js j(r + 1)−a + E

 n j∑
k=1,l=1

(
n j − l + 1

)
p jlk−a jl


− niE

[
C jn j

(
Q′

)]
− nisi(r + 1)−a

− E

 ni∑
k=1,l=1

(ni − l + 1) pilk−ail


− n jE (t0) − n js jr−a − E

 n j∑
k=1,l=1

(
n j − l + 1

)
p jlk−a jl


=

(
ni + n j

)
·
(
si − s j

)
·
[
ra − (r + 1)a] + (

n jsi − nis j

)
· (r + 1)a

+

n j

ni∑
l,k=1

pik

ln (kλik)
·

(
1 −

1
kλik

)
− ni

n j∑
l,k=1

p jk

ln
(
kλ jk

) · (1 − 1
kλ jk

) ≤ 0.

Then, we just need to repeat the previous method to complete the proof of the group order rule.
Secondly, for the scheduling problem of jobs in a group, we can reduce it to problem

1
∣∣∣∣pr

j = p jr−ai j , ai j ∼ U
(
0, λi j

)∣∣∣∣ E
(∑
ω jC j

)
, and ω j = 1, Theorem 2.2 has been proved.

Therefore, we have completed the proof. □

4. Algorithms and examples

The following are heuristic algorithms and examples for Theorems 3.1 and 3.2.
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Algorithm 1
Step 1: When pik ≤ pil ⇒ λik ≤ λil, the priority principle shall be followed λi j in group;
Step 2: Priority arrangement for groups with small si.

The group Gi time complexity is O
(
ni log ni

)
, the total time complexity of step 1 is

m∑
i=1

O
(
ni log ni

)
;

the optimal order time complexity of step 2 is O
(
m log m

)
. The time complexity of Algorithm 1 is

O
(
n log n

)
.

An example of Algorithm 1:

Example 1. m = 2, G1 = {J11, J12, J13}, G2 = {J21, J22}, s1 = 2, s2 = 3, a = 2, a11 ∼ U (0, 2),
a12 ∼ U (0, 4), a13 ∼ U (0, 3), a21 ∼ U (0, 2), a22 ∼ U (0, 4), p11 = 1, p12 = 3, p13 = 2, p21 = 4, p22 = 5.

solution. Step 1: In G1, because λ11 = 2 < λ13 = 3 < λ12 = 4, p11 = 1 < p13 = 2 < p12 = 3;
λ21 = 2 < λ22 = 4, p21 = 4 < p22 = 5, satisfy the consistency assumption, the order is J12 → J13 → J11,
J22 → J21;

Step 2: Because s1 = 2 < s2 = 3, so G1 → G2.
The solution of this example is E (Cmax) = 13.07.

Algorithm 2
Step 1: Arrange the production of jobs in the group by the priority of λi j;
Step 2: When the requirements are met si

ni
≤

s j

n j
in the group, the group processing shall be arranged

according to the non-decreasing order of

ni∑
l,k=1

pik
ln(kλik) ·

(
1− 1

kλik

)
ni

.

The complexity analysis of Algorithm 2 is the same as Algorithm 1.
We give an example of Algorithm 2.
Example 2. Same as Example 1.
solution. Step 1: Compare the values of λi j, we can get J12 → J13 → J11, J22 → J21;

Step 2: Because s1
n1
= 2

3 <
s2
n2
= 3

2 ,

∑ p1 j

ln
(
k
λ1 j

) ·(1− 1
kλ j

)
n1

= 0.866 <

∑ p2 j

ln
(
k
λ2 j

) ·(1− 1
kλ j

)
n2

= 2.844. The group
order is G1 → G2.

After calculation, we have E (Cmax) = 50.15.

5. Conclusions

For the single machine stochastic scheduling and group stochastic scheduling problems established
in this paper, we consider that the learning rate is a random variable, which is not available in previous
literature. We find that such problems are very general, and we can also find examples in real life. For
example, if workers participate in learning a new project training, their mastery time of new technology
may be random, which can be expressed by random variables. After transforming the problem, we
give corresponding theoretical assumptions for the proposed problem, and then give the solution of the
optimal order. For the case of group technology, we give a numerical example to verify the theoretical
results.

Next, we can combine it with intelligent algorithms to solve the problems of large number of jobs,
machine maintenance, waiting time for job processing, and multi-stage processing of jobs.
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