Research article

On finite-dimensional irreducible modules for the universal Askey-Wilson algebra

  • Received: 24 March 2023 Revised: 23 May 2023 Accepted: 25 May 2023 Published: 05 June 2023
  • MSC : 20G42, 33D45, 33D80

  • Let $ \Delta_q $ be the universal Askey-Wilson algebra. If $ q $ is not a root of unity, it is shown in the Huang's earlier paper that an $ (n+1) $-dimensional irreducible $ \Delta_q $-module is a quotient $ V_n(a, b, c) $ of a $ \Delta_q $-Verma module with

    $ {\textbf{ Condition A: }} \; abc, a^{-1}bc, ab^{-1}c, abc^{-1} \notin \left \{q^{n-2i+1}| 1 \leq i \leq n\right \}. $

    The aim of this paper is to discuss the structures of $ (n+1) $-dimensional $ \Delta_q $-modules $ V_n(a, b, c) $ when the given triples $ (a, b, c) $ do not satisfy Condition A.

    Citation: Wanxia Wang, Shilin Yang. On finite-dimensional irreducible modules for the universal Askey-Wilson algebra[J]. AIMS Mathematics, 2023, 8(8): 18930-18947. doi: 10.3934/math.2023964

    Related Papers:

  • Let $ \Delta_q $ be the universal Askey-Wilson algebra. If $ q $ is not a root of unity, it is shown in the Huang's earlier paper that an $ (n+1) $-dimensional irreducible $ \Delta_q $-module is a quotient $ V_n(a, b, c) $ of a $ \Delta_q $-Verma module with

    $ {\textbf{ Condition A: }} \; abc, a^{-1}bc, ab^{-1}c, abc^{-1} \notin \left \{q^{n-2i+1}| 1 \leq i \leq n\right \}. $

    The aim of this paper is to discuss the structures of $ (n+1) $-dimensional $ \Delta_q $-modules $ V_n(a, b, c) $ when the given triples $ (a, b, c) $ do not satisfy Condition A.



    加载中


    [1] P. Baseilhac, Deformed Dolan-Grady relations in quantum integrable models, Nucl. Phys. B, 709 (2005), 491–521. http://doi.org/10.1016/j.nuclphysb.2004.12.016 doi: 10.1016/j.nuclphysb.2004.12.016
    [2] B. Curtin, Modular Leonard triples, Linear Algebra Appl., 424 (2007), 510–539. http://doi.org/10.1016/j.laa.2007.02.024 doi: 10.1016/j.laa.2007.02.024
    [3] D. B. Fairlie, Quantum deformations of $\mathfrak su(2)$, J. Phys. A: Math. Gen., 23 (1990), L183–L187. http://doi.org/10.1088/0305-4470/23/5/001 doi: 10.1088/0305-4470/23/5/001
    [4] M. Havlíček, S. Pošta, On the classification of irreducible finite-dimensional representations of $U_{q}'(\mathfrak so_3)$ algebra, J. Math. Phys., 42 (2001), 472–500. http://doi.org/10.1063/1.1328078 doi: 10.1063/1.1328078
    [5] H. Huang, Finite-dimensional irreducible modules of the universal Askey-Wilson algebra, Commun. Math. Phys., 340 (2015), 959–984. http://doi.org/10.1007/s00220-015-2467-9 doi: 10.1007/s00220-015-2467-9
    [6] H. Huang, Finite-dimensional irreducible modules of the universal Askey-Wilson algebra at roots of unity, J. Algebra, 569 (2021), 12–29. https://doi.org/10.1016/j.jalgebra.2020.11.012 doi: 10.1016/j.jalgebra.2020.11.012
    [7] H. Huang, The classification of Leonard triples of QRacah type, Linear Algebra Appl., 436 (2012), 1442–1472. http://doi.org/10.1016/j.laa.2011.08.033 doi: 10.1016/j.laa.2011.08.033
    [8] J. Jantzen, Lectures on quantum groups, Providence: American Mathematical Society, 1996. https://doi.org/10.1090/gsm/006
    [9] A. Lavrenov, On Askey-Wilson algebra, Czech. J. Phys., 47 (1997), 1213–1219. http://doi.org/10.1023/A:1022821531517 doi: 10.1023/A:1022821531517
    [10] P. Terwilliger, The universal Askey-Wilson algebra, SIGMA, 7 (2011), 069. https://doi.org/10.3842/SIGMA.2011.069 doi: 10.3842/SIGMA.2011.069
    [11] P. Terwilliger, The universal Askey-Wilson algebra and the equitable presentation of $U_{q}(\mathfrak sl_2)$, SIGMA, 7 (2011), 099. http://doi.org/10.3842/SIGMA.2011.099 doi: 10.3842/SIGMA.2011.099
    [12] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other, Linear Algebra Appl., 330 (2001), 149–203. http://doi.org/10.1016/s0024-3795(01)00242-7 doi: 10.1016/s0024-3795(01)00242-7
    [13] P. Terwilliger, Two linear transformations each tridiagonal with respect to an eigenbasis of the other; the TD-D canonical form and the LB-UB canonical form, J. Algebra, 291 (2005), 1–45. https://doi.org/10.1016/j.jalgebra.2005.05.033 doi: 10.1016/j.jalgebra.2005.05.033
    [14] R. Vidūnas, Askey-Wilson relations and Leonard pairs, Discrete Math., 308 (2008), 479–495. http://doi.org/10.1016/j.disc.2007.03.037 doi: 10.1016/j.disc.2007.03.037
    [15] A. S. Zhedanov, "Hidden symmetry" of Askey-Wilson polynomial, Theor. Math. Phys., 89 (1991), 1146–1157. http://doi.org/10.1007/BF01015906 doi: 10.1007/BF01015906
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(928) PDF downloads(40) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog