Research article Special Issues

Blow-up of solutions for nonlinear wave equations on locally finite graphs

  • Received: 23 February 2023 Revised: 14 May 2023 Accepted: 16 May 2023 Published: 26 May 2023
  • MSC : 35L05, 35R02, 58J45

  • Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation

    $ \partial^2_t u = \Delta u + f(u) $

    on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.

    Citation: Desheng Hong. Blow-up of solutions for nonlinear wave equations on locally finite graphs[J]. AIMS Mathematics, 2023, 8(8): 18163-18173. doi: 10.3934/math.2023922

    Related Papers:

  • Let $ G = (V, E) $ be a local finite connected weighted graph, $ \Omega $ be a finite subset of $ V $ satisfying $ \Omega^\circ\neq\emptyset $. In this paper, we study the nonexistence of the nonlinear wave equation

    $ \partial^2_t u = \Delta u + f(u) $

    on $ G $. Under the appropriate conditions of initial values and nonlinear term, we prove that the solution for nonlinear wave equation blows up in a finite time. Furthermore, a numerical simulation is given to verify our results.



    加载中


    [1] L. M. Song, Z. J. Yang, X. L. Li, S. M. Zhang, Coherent superposition propagation of Laguerre-Gaussian and Hermite Gaussian solitons, Appl. Math. Lett., 102 (2020), 106114. https://doi.org/10.1016/j.aml.2019.106114 doi: 10.1016/j.aml.2019.106114
    [2] S. Shen, Z. J. Yang, Z. G. Pang, Y. R. Ge, The complex-valued astigmatic cosine-Gaussian soliton solution of the nonlocal nonlinear Schrödinger equation and its transmission characteristics, Appl. Math. Lett., 125 (2022), 107755. https://doi.org/10.1016/j.aml.2021.107755 doi: 10.1016/j.aml.2021.107755
    [3] S. Shen, Z. J. Yang, X. L. Li, S. Zhang, Periodic propagation of complex-valued hyperbolic-cosine-Gaussian solitons and breathers with complicated light field structure in strongly nonlocal nonlinear media, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 106005. https://doi.org/10.1016/j.cnsns.2021.106005 doi: 10.1016/j.cnsns.2021.106005
    [4] M. M. Khader, M. Adel, Numerical solutions of fractional wave equations using an efficient class of FDM based on the Hermite formula, Adv. Differential Equ., 2016 (2016), http://dx.doi.org/10.1186/s13662-015-0731-0
    [5] M. M. Khader, M. Inc, M. Adel, M. A. Akinlar, Numerical solutions to the fractional-order wave equation, Int. J. Mod. Phys. C, 345 (2023), 2350067. http://dx.doi.org/10.1142/S0129183123500675 doi: 10.1142/S0129183123500675
    [6] F. Gazzola, M. Squassina, Global solutions and finite time blow up for damped semilinear wave equations, Ann. I. H. Poincaré- AN, 23 (2006), 185–207. http://dx.doi.org/10.1016/j.anihpc.2005.02.007 doi: 10.1016/j.anihpc.2005.02.007
    [7] H. Feng, S. Li, Global nonexistence for a semilinear wave equation with nonlinear boundary dissipation, J. Math. Anal. Appl., 391 (2012), 255–264. http://dx.doi.org/10.1016/j.jmaa.2012.02.013 doi: 10.1016/j.jmaa.2012.02.013
    [8] H. Kawarada, On solutions of nonlinear wave equations, J. Phys. Soc. Jpn., 31 (1971), 280–282. http://dx.doi.org/10.1143/JPSJ.31.280 doi: 10.1143/JPSJ.31.280
    [9] K. Matsuya, A blow-up theorem for a discrete semilinear wave equation, J. Diff. Equa. Appl., 19 (2013), 457–465. http://dx.doi.org/10.1080/10236198.2011.651134 doi: 10.1080/10236198.2011.651134
    [10] A. Huang, Y. Lin, S. T. Yau, Existence of solutions to mean field equations on graphs, Commun. Math. Phys., 377 (2020), 613–621. https://doi.org/10.1007/s00220-020-03708-1 doi: 10.1007/s00220-020-03708-1
    [11] X. Han, M. Shao, L. Zhao, Existence and convergence of solutions for nonlinear biharmonic equations on graphs, J. Differ. Equ., 268 (2020), 3936–3961. https://doi.org/10.1016/j.jde.2019.10.007 doi: 10.1016/j.jde.2019.10.007
    [12] Y. Lin, Y. Y. Yang, A heat flow for the mean field equation on a finite graph, Calc. Var. Part. Differ. Equ., 60 (2021). https://doi.org/10.1007/s00526-021-02086-3
    [13] S. Liu, Y. Y. Yang, Multiple solutions of Kazdan-Warner equation on graphs in the negative case, Calc. Var. Part. Differ. Equ., 59 (2020), 1–15. http://dx.doi.org/10.1007/s00526-020-01840-3 doi: 10.1007/s00526-020-01840-3
    [14] A. Grigor'yan, Y. Lin, Y. Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 261 (2016), 4924–4943. http://dx.doi.org/10.1016/j.jde.2016.07.011 doi: 10.1016/j.jde.2016.07.011
    [15] A. Grigor'yan, Y. Lin, Y. Y. Yang, Kazdan-Warner equation on graph, Calc. Var. Part. Differ. Equ., 55 (2016), 92. http://dx.doi.org/10.1007/s00526-016-1042-3 doi: 10.1007/s00526-016-1042-3
    [16] A. Grigor'yan, Y. Lin, Y. Y. Yang, Existence of positive solutions to some nonlinear equations on locally finite graphs, Sci. China Math., 60 (2017), 1311–1324. http://dx.doi.org/10.1007/s11425-016-0422-y doi: 10.1007/s11425-016-0422-y
    [17] Y. Lin, Y. Wu, The existence and nonexistence of global solutions for a semilinear heat equation on graphs, Calc. Var. Part. Differ. Equ., 56 (2017), 102. http://dx.doi.org/10.1007/s00526-017-1204-y doi: 10.1007/s00526-017-1204-y
    [18] Y. Lin, Y. Wu, Blow-up problems for nonlinear parabolic equations on locally finite graphs, Acta Math. Sci. Ser. B (Engl. Ed.), 38 (2018), 843–856. http://dx.doi.org/10.3969/j.issn.0252-9602.2018.03.009
    [19] J. Friedman, J. P. Tillich, Wave equations for graphs and the edge-based Laplacian, Pacific J. Math., 216 (2004), 229–266. http://dx.doi.org/10.2140/pjm.2004.216.229 doi: 10.2140/pjm.2004.216.229
    [20] L. Ma, X. Wang, Schrödinger and wave equations on finite graphs, 2012. https://doi.org/10.48550/arXiv.1207.5191
    [21] Y. Lin, Y. Y. Xie, The existence of the solution of the wave equation on graphs, 2021. https://doi.org/10.48550/arXiv.1908.02137
    [22] Y. Lin, Y. Y. Xie, Application of Rothe's method to a nonlinear wave equation on graphs, Bull. Korean Math. Soc., 59 (2022), 745–756. https://doi.org/10.4134/BKMS.b210445 doi: 10.4134/BKMS.b210445
    [23] F. Han, B. Hua, Uniqueness class of the wave equation on graphs, 2020. https://doi.org/10.48550/arXiv.2009.12793
    [24] A. Grigor'yan, Introduction to analysis on graphs, University Lecture Series, AMS, Providence, RI, 2018. https://bookstore.ams.org/ulect-71/
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(942) PDF downloads(70) Cited by(1)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog