Research article

Consecutive integers in the form $ a^x+y^b $

  • Received: 13 April 2023 Revised: 04 May 2023 Accepted: 09 May 2023 Published: 23 May 2023
  • MSC : 11D61, 11D79, 11A05

  • Let $ a, b $ and $ k $ be integers greater than $ 1 $. For a tuple of $ k $ consecutive integers sorted in ascending order, denoted by $ T_k $, call $ T_k $ a nice $ k $-tuple if each integer of $ T_k $ is a sum of two powers of the form $ a^x+y^b $ and a perfect $ k $-tuple if each integer of $ T_k $ is a sum of two perfect powers of the form $ a^x+y^b $, respectively. Let $ N_k(a, b) $ be the number of nice $ k $-tuples and $ \widetilde{N}_k(a, b) $ be the number of perfect $ k $-tuples. For a given $ (a, b) $, it is quite interesting to find out $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. In 2020, Lin and Cheng obtained the formula for $ N_k(2, 2) $. The main goal of this paper is to establish the formulas for $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. Actually, by using the method of modulo coverage together with some elementary techniques, the formulas for $ \widetilde{N}_k(2, 2) $, $ \widetilde{N}_k(3, 2) $ and $ N_k(3, 2) $ are derived.

    Citation: Zhen Pu, Kaimin Cheng. Consecutive integers in the form $ a^x+y^b $[J]. AIMS Mathematics, 2023, 8(8): 17620-17630. doi: 10.3934/math.2023899

    Related Papers:

  • Let $ a, b $ and $ k $ be integers greater than $ 1 $. For a tuple of $ k $ consecutive integers sorted in ascending order, denoted by $ T_k $, call $ T_k $ a nice $ k $-tuple if each integer of $ T_k $ is a sum of two powers of the form $ a^x+y^b $ and a perfect $ k $-tuple if each integer of $ T_k $ is a sum of two perfect powers of the form $ a^x+y^b $, respectively. Let $ N_k(a, b) $ be the number of nice $ k $-tuples and $ \widetilde{N}_k(a, b) $ be the number of perfect $ k $-tuples. For a given $ (a, b) $, it is quite interesting to find out $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. In 2020, Lin and Cheng obtained the formula for $ N_k(2, 2) $. The main goal of this paper is to establish the formulas for $ N_k(a, b) $ and $ \widetilde{N}_k(a, b) $. Actually, by using the method of modulo coverage together with some elementary techniques, the formulas for $ \widetilde{N}_k(2, 2) $, $ \widetilde{N}_k(3, 2) $ and $ N_k(3, 2) $ are derived.



    加载中


    [1] E. Catalan, Note extraite d'une lettre adressée à l'éditeur par Mr. E. Catalan, Répétiteur à l'école polytechnique de Paris, J. Reine Angew. Math., 1844 (2009), 192. https://doi.org/10.1515/crll.1844.27.192 doi: 10.1515/crll.1844.27.192
    [2] R. Tijdeman, On the equation of Catalan, Acta. Arithmetca, 29 (1976), 197–209.
    [3] M. Mignotte, Catalan's equation just before 2000, Number theory (Turku, 1999), Berlin: de Gruyter, 2001.
    [4] P. Mihailescu, Primary cyclotomic units and a proof of Catalans conjecture, J. Reine Angew. Math., 572 (2004), 167–196.
    [5] A. Herschfeld, The equation $2^x-3^y = d$, Bull. Amer. Math. Soc., 42 (1936), 231–234. http://dx.doi.org/10.1090/S0002-9904-1936-06275-0 doi: 10.1090/S0002-9904-1936-06275-0
    [6] S. Pillai, On the inequality $0 < a^x-b^y\le n$, J. India. Math. Soc., 19 (1931), 1–11.
    [7] S. Pillai, On the equation $a^x-b^y = c$, J. India. Math. Soc., 2 (1936), 119–122.
    [8] S. Pillai, On the equation $2^x-3^y = 2^X-3^Y$, Bull. Calcutta Math. Soc., 37 (1945), 18–20.
    [9] C. Ko, On a problem of consecutive integers, J. Sichuan Uni., 2 (1962), 1–6.
    [10] Z. Lin, K. Cheng, A note on consecutive integers of the form $2^x+y^2$, AIMS Math., 5 (2020), 4453–4458. http://dx.doi.org/10.3934/math.2020285 doi: 10.3934/math.2020285
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1215) PDF downloads(66) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog