Research article

Sturm's Theorem for Min matrices

  • Received: 17 February 2023 Revised: 29 April 2023 Accepted: 11 May 2023 Published: 18 May 2023
  • MSC : 15A18, 15B99

  • In the present paper, we study Min matrix $ \mathcal{A}_{min} = \left[a_{min\left(i, j\right)}\right]_{i, j = 1}^n $, where $ a_s $'s are the elements of a real sequence $ \left\lbrace a_s\right\rbrace $. We first obtain a recurrence relation for the characteristic polynomial for matrix $ \mathcal{A}_{min} $, and some relations between the coefficients of its characteristic polynomial. Next, we show that the sequence of the characteristic polynomials of the $ i \times i \left(i \leq n\right) $ Min matrices satisfies the Sturm sequence properties according to different required conditions of the sequence $ \left\lbrace a_s\right\rbrace $. Using Sturm's Theorem, we get some results about the eigenvalues, such as the number of eigenvalues in an interval. Thus, we obtain the number of positive and negative eigenvalues of Min matrix $ \mathcal{A}_{min} $. Finally, we give an example to illustrate our results.

    Citation: Efruz Özlem Mersin. Sturm's Theorem for Min matrices[J]. AIMS Mathematics, 2023, 8(7): 17229-17245. doi: 10.3934/math.2023880

    Related Papers:

  • In the present paper, we study Min matrix $ \mathcal{A}_{min} = \left[a_{min\left(i, j\right)}\right]_{i, j = 1}^n $, where $ a_s $'s are the elements of a real sequence $ \left\lbrace a_s\right\rbrace $. We first obtain a recurrence relation for the characteristic polynomial for matrix $ \mathcal{A}_{min} $, and some relations between the coefficients of its characteristic polynomial. Next, we show that the sequence of the characteristic polynomials of the $ i \times i \left(i \leq n\right) $ Min matrices satisfies the Sturm sequence properties according to different required conditions of the sequence $ \left\lbrace a_s\right\rbrace $. Using Sturm's Theorem, we get some results about the eigenvalues, such as the number of eigenvalues in an interval. Thus, we obtain the number of positive and negative eigenvalues of Min matrix $ \mathcal{A}_{min} $. Finally, we give an example to illustrate our results.



    加载中


    [1] G. Pólya, G. Szegö, Problems and theorems in analysis II, Berlin: Springer, 1998. http://dx.doi.org/10.1007/978-3-642-61905-2
    [2] M. Catalani, A particular matrix and its relationships with Fibonacci numbers, arXiv: math/0209249.
    [3] R. Bhatia, Infinitely divisible matrices, Am. Math. Mon., 113 (2006), 221–235. http://dx.doi.org/10.2307/27641890 doi: 10.2307/27641890
    [4] R. Bhatia, Min matrices and mean matrices, Math. Intelligencer, 33 (2011), 22–28. http://dx.doi.org/10.1007/s00283-010-9194-z doi: 10.1007/s00283-010-9194-z
    [5] C. Da Fonseca, On the eigenvalues of some tridiagonal matrices, J. Comput. Appl. Math., 200 (2007), 283–286. http://dx.doi.org/10.1016/j.cam.2005.08.047 doi: 10.1016/j.cam.2005.08.047
    [6] L. Moyé, Statistical monitoring of clinical trials: fundamentals for investigators, New York: Springer, 2006. http://dx.doi.org/10.1007/0-387-27782-X
    [7] H. Neudecker, G. Trenkler, S. Liu, Problem section, Stat. Papers, 50 (2009), 221–223. http://dx.doi.org/10.1007/s00362-008-0174-8
    [8] K. Chu, S. Puntanen, G. Styan, Problem section, Stat. Papers, 52 (2011), 257–262. http://dx.doi.org/10.1007/s00362-010-0363-0
    [9] M. Mattila, P. Haukkanen, Studying the various properties of Min and Max matrices-elemantary vs. more advanced methods, Spec. Matrices, 4 (2016), 101–109. http://dx.doi.org/10.1515/spma-2016-0010 doi: 10.1515/spma-2016-0010
    [10] M. Bahşi, S. Solak, A particular matrix and its properties, Int. J. Math. Sci. Appl., 1 (2011), 971–974.
    [11] S. Solak, M. Bahşi, A particular matrix and its some properties, Sci. Res. Essays, 8 (2013), 1–5. http://dx.doi.org/10.5897/SRE11.410 doi: 10.5897/SRE11.410
    [12] M. Bahşi, S. Solak, Some particular matrices and their characteristic polynomials, Linear Multilinear A., 63 (2015), 2071–2078. http://dx.doi.org/10.1080/03081087.2014.940940 doi: 10.1080/03081087.2014.940940
    [13] J. Stuart, Nested matrices and inverse $M$-matrices, Czech. Math. J., 65 (2015), 537–544. http://dx.doi.org/10.1007/s10587-015-0192-3 doi: 10.1007/s10587-015-0192-3
    [14] S. Jafari-Petroudi, B. Pirouz, A particular matrix, its inversion and some norms, Appl. Comput. Math., 4 (2015), 47–52. http://dx.doi.org/10.11648/j.acm.20150402.13
    [15] S. Jafari-Petroudi, B. Pirouz, A note on Hadamard inverse and Hadamard exponential of a matrix with Fibonacci numbers, Proceedings of The $7$th National Conference on Mathematics, 2015, 28–29.
    [16] S. Jafari-Petroudi, M. Pirouz, A note on tribonacci numbers with particular matrices, Proceedings of The 28th International Conference of The Jangjeon Mathematical Society, 2015, 71.
    [17] S. Jafari-Petroudi, M. Pirouz, On the bounds for the spectral norm of particular matrices with Fibonacci and Lucas numbers, Int. J. Adv. Appl. Math. Mech., 3 (2016), 82–90.
    [18] S. Jafari-Petroudi, M. Pirouz, Toward special symmetric matrices with harmonic numbers, Proceedings of The 8th National Conference on Mathematics, 2016, 11–12.
    [19] E. Kılıç, T. Arıkan, Studying new generalizations of Max-Min matrices with a novel approach, Turk. J. Math., 43 (2019), 2010–2024.
    [20] T. Solmaz, M. Bahşi, Max and Min matrices with hyper-Fibonacci numbers, Asian-Eur. J. Math., 15 (2022), 2250084. http://dx.doi.org/10.1142/S179355712250084X doi: 10.1142/S179355712250084X
    [21] D. Özgul, M. Bahşi, Min matrices with hyper-Lucas numbers, J. Sci. Arts, 4 (2020), 855–864. http://dx.doi.org/10.46939/J.Sci.Arts-20.4-a07 doi: 10.46939/J.Sci.Arts-20.4-a07
    [22] C. Kızılateş, N. Terzioğlu, On $r$-min and $r$-max matrices, J. Appl. Math. Comput., 68 (2022), 4559–4588. http://dx.doi.org/10.1007/s12190-022-01717-y doi: 10.1007/s12190-022-01717-y
    [23] M. Jain, S. Iyengar, R. Jain, Numerical methods: problems and solutionsz, Bangalore: New Age International, 2007.
    [24] P. Ciarlet, J. Lions, Solution of equations in $\mathbb{R}^{n}$, In: Handbook of numerical analysis, Amsterdam: Elsevier, (1994), 625–778.
    [25] M. Sturm, Analyse d' un Mémoire sur la résolution des équations numériques, In: Collected works of Charles François Sturm, Basel: Birkhäuser, 2009,323–326. http://dx.doi.org/10.1007/978-3-7643-7990-2_24
    [26] M. Sturm, Extrait d'un Mémoire sur L'intécration d'un système d'équations différentielles linéaires, présenté à l'Académie des sciences, In: Collected works of Charles François Sturm, Basel: Birkhäuser, 2009,334–342. http://dx.doi.org/10.1007/978-3-7643-7990-2_27
    [27] P. Sturm, Mémoire sur la résolution des équations numériques, In: Collected works of Charles François Sturm, Basel: Birkhäuser, 2009,345–390. http://dx.doi.org/10.1007/978-3-7643-7990-2_29
    [28] L. Greenberg, Sturm sequences for nonlinear eigenvalue problems, SIAM J. Math. Anal., 20 (1989), 182–199. http://dx.doi.org/10.1137/0520015 doi: 10.1137/0520015
    [29] E. Isaacson, H. Keller, Analysis of numerical methods, 2 Eds., New York: John Wiley-Sons, 1966.
    [30] J. Stoer, R. Bulirsch, Introduction to numerical analysis, New York: Springer-Verlag, 2002. http://dx.doi.org/10.1007/978-0-387-21738-3
    [31] A. Mostowski, M. Stark, Introduction to higher algebra, Pergamon: Elsevier, 1964. http://dx.doi.org/10.1016/C2013-0-10019-0
    [32] E. Mersin, M. Bahşi, Sturm theorem for the generalized Frank matrix, Hacet. J. Math. Stat., 50 (2021), 1002–1011. http://dx.doi.org/10.15672/hujms.773281 doi: 10.15672/hujms.773281
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1258) PDF downloads(56) Cited by(5)

Article outline

Figures and Tables

Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog