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Abstract: In the present paper, we study Min matrixAmin =
[
amin(i, j)

]n

i, j=1
, where as’s are the elements

of a real sequence {as}. We first obtain a recurrence relation for the characteristic polynomial for matrix
Amin, and some relations between the coefficients of its characteristic polynomial. Next, we show that
the sequence of the characteristic polynomials of the i × i (i ≤ n) Min matrices satisfies the Sturm
sequence properties according to different required conditions of the sequence {as}. Using Sturm’s
Theorem, we get some results about the eigenvalues, such as the number of eigenvalues in an interval.
Thus, we obtain the number of positive and negative eigenvalues of Min matrixAmin. Finally, we give
an example to illustrate our results.
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1. Introduction

Matrices have wide use in a variety of problems in mathematics and many other sciences, such
as physics and engineering. Considering that the matrix representation of a particular problem can
yield significant results, some concepts, such as eigenvalue, singular value, norm and determinant, are
useful for these results. There are some special matrices that attract the attention of researchers; Min
and Max matrices are such matrices. Min and Max matrices with minimum and maximum entries were
first introduced by Pólya and Szegö [1] as

Amin =



1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · n


and Amax =



1 2 3 · · · n
2 2 3 · · · n
3 3 3 · · · n
...

...
...

. . .
...

n n n · · · n


, (1.1)
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respectively. These matrices are expressed as Amin =
[
min (i, j)

]n
i, j=1 and Amax =

[
max (i, j)

]n
i, j=1.

Catalani [2] gave some relations between the principal minors of the matrix Amin and the Fibonacci
numbers. Bhatia [3] showed that the matrix Amin is infinitely divisible, and [4] studied this and
related matrices. Eigenvalues and inverse of the matrix C =

[
min {ai − b, a j − b}

]n
i, j=1 were studied

by Fonseca [5] for a > 0 and a , b. Moyé [6] studied the covariance matrix of Brownian motion,
which appears to be a certain Min matrix. By the motivation of the Moyé’s paper, Neudecker et al. [7]
posed some problems on the determinant, inverse and positive definiteness of more general type of Min
matrices with real number entries, then Chu et al. [8] answered these problems. The general forms of
Min and Max matrices given in Eq (1.1) are

Amin =



a1 a1 a1 · · · a1

a1 a2 a2 · · · a2

a1 a2 a3 · · · a3
...

...
...

. . .
...

a1 a2 a3 · · · an


and Amax =



a1 a2 a3 · · · an

a2 a2 a3 · · · an

a3 a3 a3 · · · an
...

...
...

. . .
...

an an an · · · an


, (1.2)

respectively [7–9]. These Min and Max matrices are expressed as Amin =
[
amin(i, j)

]n

i, j=1
and

Amax =
[
amax(i, j)

]n

i, j=1
, where as’s are the elements of a real sequence {as}. The determinants of the

matricesAmin andAmax are [9]

det (Amin) = a1 (a2 − a1) (a3 − a2) . . . (an − an−1)

and
det (Amax) = (a1 − a2) (a2 − a3) . . . (an−1 − an) an.

Bahşi and Solak [10–12] characterized the matrices Ak =
[
k + min (i, j) − 1

]n
i, j=1 and

Bk =
[
k + max (i, j) − 1

]n
i, j=1 for k ∈ R, and studied some of their properties, such as the determinants,

inverses and characteristic polynomials. The general form of Min matrix was called a nested symmetric
matrix and some of its properties, such as the determinant, inverse, principle minors, LU and QR-
decompositions were studied by Stuart [13]. Petroudi and Pirouz [14] defined the exponential form
of Min matrix as A =

[
amin(i, j)−1

]n

i, j=1
, where a > 1 is a positive real constant. They investigated some

properties of this matrix, such as the determinant, inverse, Hadamard inverse and norm. Petroudi and
Pirouz [15–17] examined the matrices Fmin =

[
Fmin(i, j)

]n

i, j=1
, Fmax =

[
Fmax(i, j)

]n

i, j=1
F =

[
Fmin(i, j)+1

]n

i, j=1

and e◦F =
[
eFmin(i, j)+1

]n

i, j=1
, where Fn is the nth Fibonacci numbers, for some properties as mentioned

above. Some relations between the general forms of Min, Max matrices and meet, join matrices were
examined by Mattila and Haukkanen [9]. They used meet and join matrices as a tool to obtain their
results. Petroudi and Pirouz [18] studied the particular symmetric matrix H =

[
Hmin(i, j)

]n

i, j=1
, where Hn

is the nth Harmonic number. The authors investigated its Hadamard exponential matrix, along with
some of its properties. They also derived the Euclidean norms and some bounds for the spectral norms
of these matrices. Kılıç and Arıkan [19] studied the matricesAmin,Amax, and their Hadamard inverses
as the generalizations of Min and Max matrices. The authors obtained the LU-decompositions, inverse,
Cholesky decompositions and LU-decompositions of the inverses of these matrices. The characteristic
polynomials, determinants, inverses and Hadamard inverses of Max and Min matrices whose entries
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consist of the hyper-Fibonacci and hyper-Lucas numbers were examined in [20, 21]. Kızılateş and
Terzioğlu [22] defined the matrices r-Min, r-Max and their Hadamard inverses. They investigated
some properties of these matrices, such as the determinant, inverse, norm and factorizations.

It is well known that the eigenvalues of a matrix are equivalent to the roots of the matrix’s
characteristic polynomial. Since the eigenvalues give some important information about matrices, the
problem of finding the zeros of a polynomial is important for many sciences. There are some iterative
methods, such as Newton’s formula [23], and some bounds, such as Cauchy’s bound [24], for this
need. Also, Descartes’ rule of sign [24] and Budan Fourier Theorem [24] give the upper bounds for
the number of zeros in an interval. These results do not give the exact number of zeros of a polynomial
in an interval. Sturm’s Theorem is a very useful tool for just this purpose for any polynomial without
multiple zeros. Sturm’s Theorem uses the number of sign changes of the consecutive members of the
Sturm sequence to get the exact number of zeros in an interval. Sturm’s Theorem has been known by
means of Sturm’s studies [25–27] first appeared in 1829. There are many versions and analogies of the
Sturm sequence properties and Sturm’s Theorem in the literature [28–31].

Now, we give the Sturm analogy, which we use for this paper.

Definition 1.1. [28] Let P0 (x) , P1 (x) , . . . , Pn (x) be continuous functions on an interval (a, b) (with
the possibilities a = −∞, b = ∞). If

(1) P0 (x) has no zeros in (a, b),
(2) The set of zeros of Pi (x) is discrete for 1 ≤ i ≤ n,
(3) If Pi (x0) = 0, then Pi−1 (x0) Pi+1 (x0) < 0 for 1 ≤ i ≤ n − 1,
(4) If Pi (x0) = 0, then Pi−1 (x0) [Pi (x0 + ε2) − Pi (x0 − ε1)] < 0 for 1 ≤ i ≤ n and sufficiently small

ε1, ε2 > 0,

then the sequence P0 (x) , P1 (x) , . . . , Pn (x) has the Sturm sequence properties.

Theorem 1.1. [28] Suppose that the sequence P0 (x) , P1 (x) , . . . , Pn (x) has the Sturm sequence
properties on (a, b). Let α < β be any numbers in (a, b). Then Pn (x) has exactly c (β) − c (α) distinct
zeros in interval (α, β), where c (α) denotes the number of changes in sign of consecutive members of
the sequence P0 (α), P1 (α), . . . , Pn (α).

Theorem 1.2. [28] If P0 (x) , P1 (x) , . . . , Pn (x) has the Sturm sequence properties, then the zeros of
Pi (x) and Pi−1 (x) are interlaced for 1 ≤ i ≤ n.

Sturm’s Theorem was applied to symmetric tridiagonal matrices by Greenberg [28] to solve some
nonlinear eigenvalue problems. Mersin and Bahşi [32] applied Sturm’s Theorem to the generalized
Frank matrices, and examined their eigenvalues by using the Sturm sequence properties.

In the present paper, we examine the matrix Amin =
[
amin(i, j)

]n

i, j=1
given in the Eq (1.2), considering

different required conditions for the sequence {as}, such as positive, and either strictly increasing or
strictly decreasing. We seek to answer the following questions: What is the recurrence relation for
the characteristic polynomial of the matrix Amin? Are there any relations between the coefficients of
the characteristic polynomials of this matrix? Does the sequence of the characteristic polynomials of
the i × i (i ≤ n) Min matrices has the Sturm sequence properties? Can we determine the number of the
eigenvalues of Min matrixAmin in an interval?
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2. Main results

Theorem 2.1. Let Pn (λ) be the characteristic polynomial of the matrix Amin =
[
amin(i, j)

]n

i, j=1
for any

real sequence {as}. Then,

Pn (λ) = (an − an−1 − 2λ) Pn−1 (λ) − λ2Pn−2 (λ) , (2.1)

with the initial conditions P0 (λ) = 1 and P1 (λ) = a1 − λ.

Proof. The characteristic polynomial of the matrixAmin is

Pn (λ) = det (Amin − λI) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ a1 a1 · · · a1 a1

a1 a2 − λ a2 · · · a2 a2

a1 a2 a3 − λ · · · a3 a3
...

...
...

. . .
...

...

a1 a2 a3 · · · an−1 − λ an−1

a1 a2 a3 · · · an−1 an − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Subtracting ith column from the (i + 1)th column and then ith row from the (i + 1)th row for
i = n − 1, n − 2, . . . , 1, respectively, we get

Pn (λ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 − λ λ 0 · · · 0 0
λ a2 − a1 − 2λ λ · · · 0 0
0 λ a3 − a2 − 2λ · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · an−1 − an−2 − 2λ λ

0 0 0 · · · λ an − an−1 − 2λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus, we have
Pn (λ) = (an − an−1 − 2λ) Pn−1 (λ) − λ2Pn−2 (λ) ,

with initials P0 (λ) = 1 and P1 (λ) = a1 − λ. �

Theorem 2.2. Let Pn (λ) = λn + γ(n)
n−1λ

n−1 + . . . + γ(n)
1 λ + γ(n)

0 be as in Theorem 2.1. Then,

γ(n)
0 = (−an + an−1) γ(n−1)

0 = (−1)n det (Amin) ,

γ(n)
1 = (−an + an−1) γ(n−1)

1 + 2γ(n−1)
0 ,

γ(n)
i = (−an + an−1) γ(n−1)

i + 2γ(n−1)
i−1 − γ

(n−2)
i−2 , 2 ≤ i ≤ n − 2,

and
γ(n)

n−1 = −an + an−1 + 2γ(n−1)
n−2 − γ

(n−2)
n−3 = −tr (Amin) .

Proof. The following recurrence relation

Pn (λ) = (2λ − an + an−1) Pn−1 (λ) − λ2Pn−2 (λ) , (2.2)
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is equivalent to the recurrence relation in (2.1). Then, considering Eq (2.2) and the coefficients of
Pn(λ), Pn−1(λ) and Pn−2(λ), we have

λn + γ(n)
n−1λ

n−1 + . . . + γ(n)
1 λ + γ(n)

0

=(2λ − an + an−1)(λn−1 + γ(n−1)
n−2 λn−2 + . . . + γ(n−1)

1 λ + γ(n−1)
0 ) − λ2(λn−2 + γ(n−2)

n−3 λn−3 + . . . + γ(n−2)
1 λ + γ(n−2)

0 ).

Thus, desired formulas are obtained by comparison of the coefficients. Also,

γ(n)
0 = (−an + an−1) γ(n−1)

0
= (−an + an−1) (−an−1 + an−2) γ(n−2)

0
...

= (−an + an−1) (−an−1 + an−2) (−an−2 + an−3) . . . (−a2 + a1) γ(1)
0

= (−an + an−1) (−an−1 + an−2) (−an−2 + an−3) . . . (−a2 + a1) (−a1)
= (−1)n det (Amin) .

To prove the equality

γ(n)
n−1 = −an + an−1 + 2γ(n−1)

n−2 − γ
(n−2)
n−3 = −tr (Amin) ,

we must show that
2γ(n−1)

n−2 − γ
(n−2)
n−3 = −a1 − a2 − . . . − an−2 − 2an−1 (2.3)

is valid for n ≥ 3. We use the induction method on n. Since

2γ(2)
1 − γ

(1)
0 = 2

(
(−a2 + a1) γ(1)

1 + 2γ(1)
0

)
− γ(1)

0

= 2 (−a2 + a1) + 3γ(1)
0

= 2 (−a2 + a1) + 3 (−a1 + a0) γ(0)
0

= −a1 − 2a2,

the result is true for n = 3. Assume that the result is true for n = k. That is, the equality

2γ(k−1)
k−2 − γ

(k−2)
k−3 = −a1 − a2 − . . . − ak−2 − 2ak−1 (2.4)

is true. Considering Eq (2.4), we get

2γ(k)
k−1 − γ

(k−1)
k−2 = 2

(
(−ak + ak−1) γ(k−1)

k−1 + 2γ(k−1)
k−2 − γ

(k−2)
k−3

)
− γ(k−1)

k−2

= 2 (−ak + ak−1) + 3γ(k−1)
k−2 − 2γ(k−2)

k−3 + γ(k−1)
k−2 − γ

(k−1)
k−2

= 2 (−ak + ak−1) + 2
(
2γ(k−1)

k−2 − γ
(k−2)
k−3

)
− γ(k−1)

k−2

= 2 (−ak + ak−1) + 2 (−a1 − a2 − . . . − ak−2 − 2ak−1) − γ(k−1)
k−2 ,

for n = k + 1. Since

γ(k−1)
k−2 = (−ak−1 + ak−2) γ(k−2)

k−2 + 2γ(k−2)
k−3 − γ

(k−3)
k−4

= (−ak−1 + ak−2) + (−a1 − a2 − . . . − ak−3 − 2ak−2) ,

we have

2γ(k)
k−1 − γ

(k−1)
k−2

= 2 (−ak−1 + ak−2) + 2 (−a1 − a2 − . . . − ak−2 − 2ak−1) − (−ak−1 + ak−2) − (−a1 − a2 − . . . − ak−3 − 2ak−2)
= −a1 − a2 − . . . − ak−1 − 2ak.
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This completes the proof of Eq (2.3). Hence, we get

γ(n)
n−1 = −an + an−1 + 2γ(n−1)

n−2 − γ
(n−2)
n−3

= −an + an−1 + (−a1 − a2 − . . . − an−2 − 2an−1)
= −a1 − a2 − . . . − an

= −tr (Amin) .

�

Remark 2.1. We encounter the term a0 for n = 1 in the proof of Theorem 2.2. We should specify that
the reader should take a0 = 0 when required.

Now, we demonstrate that the sequence of the characteristic polynomials of the i × i (i ≤ n) Min
matricesAmin

P0 (λ) = 1, P1 (λ) , P2 (λ) , . . . , Pn−1 (λ) , Pn (λ)

has the Sturm sequence properties according to different required conditions for {as} such as positive,
and either strictly increasing or strictly decreasing. First, we give some Lemmas to use for this purpose.

Lemma 2.1. If the real sequence {as} is positive, and either strictly increasing or strictly decreasing,
then

(i) Zero is not a root of Pi (λ) for 1 ≤ i ≤ n (or equivalently zero is not an eigenvalue of the i × i
matrixAmin for 1 ≤ i ≤ n),

(ii) Two consecutive terms Pi (λ) , Pi+1 (λ) do not have a common zero for 1 ≤ i ≤ n − 1.

Proof. Let the real sequence {as} be positive, and either strictly increasing or strictly decreasing. Then,

(i) From the recurrence relation (2.1) and the equality P1 (0) = a1, we get

Pi (0) = (ai − ai−1) Pi−1 (0)
= (ai − ai−1) (ai−1 − ai−2) Pi−2 (0)
...

= (ai − ai−1) (ai−1 − ai−2) . . . (a2 − a1) a1

, 0

for 1 ≤ i ≤ n.
(ii) Suppose that Pi+1 (λ0) = Pi (λ0) = 0 for some i with 1 ≤ i ≤ n−1, then considering the recurrence

relation (2.1), we get
Pi−1 (λ0) = Pi−2 (λ0) = . . . = P0 (λ0) = 0.

Since this result contradicts P0 (λ) = 1, two consecutive terms Pi (λ) , Pi+1 (λ) can not have a
common zero for 1 ≤ i ≤ n − 1.

�

Lemma 2.2. Suppose that the real sequence {as} is positive, and either strictly increasing or strictly
decreasing.

AIMS Mathematics Volume 8, Issue 7, 17229–17245.
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(i) If the sequence {as} is strictly increasing, and J ⊂ (0,∞) is an interval that contains no zeros of

Pi−1 (λ) for 1 ≤ i ≤ n, then
Pi (λ)

Pi−1 (λ)
is strictly decreasing on interval J.

(ii) If the sequence {as} is strictly decreasing, I1 ⊂ (−∞, 0) and I2 ⊂ (0,∞) are any intervals that

contain no zeros of Pi−1 (λ) for 1 ≤ i ≤ n, then
Pi (λ)

Pi−1 (λ)
is strictly increasing on interval I1, and

strictly decreasing on I2.

Proof. We use the induction method on i for the proofs.

(i) Since
P1 (λ)
P0 (λ)

=
a1 − λ

1
= a1 − λ

is strictly decreasing on interval (0,∞), the result is true for i = 1. Let the result be true for
i ≤ k, and K ⊂ (0,∞) be an interval that contains no zeros of Pk (λ) and Pk−1 (λ). Then, from the
recurrence relation (2.1), we have

Pk+1 (λ)
Pk (λ)

= (ak+1 − ak − 2λ) − λ2 Pk−1 (λ)
Pk (λ)

for k + 1 ≤ n. It is clear that ak+1 − ak − 2λ is strictly decreasing on interval (0,∞). Also,

considering the assumption (for i ≤ k), we can say that −λ2 Pk−1 (λ)
Pk (λ)

is strictly decreasing on K.

Then, we have
Pk+1 (λ)
Pk (λ)

is strictly decreasing on K.

If Pk−1 (y) = 0 and (x, z) ⊂ (0,∞) is an interval that contains y, but no zeros of Pk (λ), then
Pk+1 (λ)
Pk (λ)

is strictly decreasing on intervals (x, y) and (y, z) . From the continuity, we have
Pk+1 (λ)
Pk (λ)

is strictly decreasing on interval (x, z) .

(ii) Since
P1 (λ)
P0 (λ)

=
a1 − λ

1
= a1 − λ

is strictly increasing on interval (−∞, 0), and strictly decreasing on interval (0,∞), the result is
true for i = 1. Let the result be true for i ≤ k, and K1 ⊂ (−∞, 0), K2 ⊂ (0,∞) be two intervals that
have no zeros of Pk (λ) and Pk−1 (λ). Then for k + 1 ≤ n, considering the recurrence relation (2.1),
we have

Pk+1 (λ)
Pk (λ)

= (ak+1 − ak − 2λ) − λ2 Pk−1 (λ)
Pk (λ)

.

ak+1 − ak − 2λ is strictly increasing on interval (−∞, 0), and strictly decreasing on (0,∞). From

the assumption (for i ≤ k), −λ2 Pk−1 (λ)
Pk (λ)

is strictly increasing on K1, and strictly decreasing on K2.

Then, we have
Pk+1 (λ)
Pk (λ)

is strictly increasing on K1, and strictly decreasing on K2.

Suppose that Pk−1 (y1) = 0, and (x1, z1) ⊂ (−∞, 0) is an interval that contains y1, but no zeros of

Pk (λ). Then,
Pk+1 (λ)
Pk (λ)

is strictly increasing on intervals (x1, y1) and (y1, z1) . Thus, considering the
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17236

continuity, we have
Pk+1 (λ)
Pk (λ)

is strictly increasing on interval (x1, z1) . Similarly, if Pk−1 (y2) = 0

and (x2, z2) ⊂ (0,∞) is an interval that contains y2, but no zeros of Pk (λ), then
Pk+1 (λ)
Pk (λ)

is strictly

decreasing on intervals (x2, y2) and (y2, z2) . From the continuity, we have
Pk+1 (λ)
Pk (λ)

is strictly

decreasing on interval (x2, z2) .

�

Theorem 2.3. Suppose that the real sequence {as} is positive, either strictly increasing or strictly
decreasing and the sequence

P0 (λ) = 1, P1 (λ) , P2 (λ) , . . . , Pn−1 (λ) , Pn (λ) (2.5)

consists of the characteristic polynomials of the i × i (i ≤ n) matricesAmin.

(i) If the sequence {as} is strictly increasing, then the sequence given in Eq (2.5) has the Sturm
sequence properties on interval (0,∞),

(ii) If the sequence {as} is strictly decreasing, then the sequence given in Eq (2.5) has the Sturm
sequence properties on interval (−∞,∞).

Proof. (i) Let the sequence {as} be strictly increasing. We must show that four conditions (1)–(4) in
Definition 1.1 are satisfied by the sequence of the characteristic polynomials of the i × i (i ≤ n)
matricesAmin.

(1) It is clear that P0 (λ) = 1 has no zeros.
(2) P1 (λ) = a1−λ has only one zero as λ0 = a1. Thus, (2) is true for i = 1. Suppose that (2) is true

for i ≤ k, then the set of zeros of Pk (λ) is discrete. Considering the recurrence relation (2.1),
we have

Pk+1 (λ) = Pk (λ)
[
(ak+1 − ak − 2λ) − λ2 Pk−1 (λ)

Pk (λ)

]
.

By using Lemma 2.1(ii), Pk+1 (λ) and Pk (λ) have no common zero, and by using

Lemma 2.2(i),
Pk+1 (λ)
Pk (λ)

is strictly decreasing between any two consecutive zeros of Pk (λ).

Hence, Pk+1 (λ) has at most one zero between any two consecutive zeros of Pk (λ). That is, (2)
is true for k + 1 ≤ n.

(3) Considering the recurrence relation (2.1) we have

Pi+1 (λ) = (ai+1 − ai − 2λ) Pi (λ) − λ2Pi−1 (λ) ,

for 1 ≤ i ≤ n − 1. If Pi (λ) = 0, then we get Pi+1 (λ) = −λ2Pi−1 (λ) for 1 ≤ i ≤ n − 1. Since
λ2 > 0, the inequality Pi+1 (λ) Pi−1 (λ) < 0 is true for λ ∈ (0,∞) .

(4) Suppose that Pi (λ0) = 0 for 1 ≤ i ≤ n, and [λ0 − ε1, λ0 + ε2] is an interval that contains no
zeros of Pi−1 (λ) for sufficiently small ε1, ε2 > 0. Then, the sign of Pi−1 (λ) does not change.

By using Lemma 2.2 (i)
Pi (λ)

Pi−1 (λ)
is strictly decreasing on interval J ⊂ (0,∞). Thus, the sign
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of
Pi (λ)

Pi−1 (λ)
(or equivalently the sign of Pi−1 (λ) Pi (λ)) is (+) and (−) in intervals [λ0 − ε1, λ0)

and (λ0, λ0 + ε2], respectively. That is,

Pi−1 (λ0 − ε1) Pi (λ0 − ε1) > 0 > Pi−1 (λ0 + ε2) Pi (λ0 + ε2) .

Since the sign of Pi−1 (λ) does not change in interval [λ0 − ε1, λ0 + ε2], we have

Pi−1 (λ0) Pi (λ0 − ε1) > 0 > Pi−1 (λ0) Pi (λ0 + ε2)

and
Pi−1 (λ0) [Pi (λ0 + ε2) − Pi (λ0 − ε1)] < 0.

This completes the proof.

(ii) The proof is similar to the proof of (i).
�

Theorem 2.4. Suppose that the real sequence {as} is positive, and either strictly increasing or strictly
decreasing.

(i) If {as} is strictly increasing, then all eigenvalues of the n× n matrixAmin are distinct and positive,
(ii) If {as} is strictly decreasing, then one of the eigenvalues of the n × n matrix Amin is positive, and

the remaining n − 1 eigenvalues are distinct and negative.

Proof. We must compute the numbers of the eigenvalues in intervals (0,∞) and (−∞, 0) for the proofs.
Assume that λı and λıı are the minimum and maximum zeros of Pi (λ) for 1 ≤ i ≤ n, respectively. By
Theorems 1.1 and 2.3, the number of distinct zeros of Pi (λ) in interval (x, y) is equal to ci(y) − ci(x),
where ci(α) is the number of sign changes of the sequence

P0 (α) , P1 (α) , P2 (α) , . . . , Pi−1 (α) , Pi (α) ,

for 1 ≤ i ≤ n. Because 0 is not a zero of Pi (λ), the sign of Pi (λ) does not change in interval [0, λı) .
Then, the sign of Pi (x) is equal to sign of Pi (0) for x ∈ (0, λı). Thus, we get ci(x) = ci(0). The sign
of Pi (λ) does not change in interval (λıı,∞). Then, we have ci(y) = ci(∞) for y ∈ (λıı,∞) . Since, the
degree of Pi (λ) is i, the form of Pi (λ) is

Pi (λ) = (−1)i λi + . . . . (2.6)

Then, the sign of Pi (∞) is (−1)i . Hence, we have ci(∞) = i. Since ci(y) − ci(x) = ci(∞) − ci(0)
for x ∈ (0, λı) and y ∈ (λıı,∞) , we must also calculate ci(0), to evaluate the number of eigenvalues in
interval (0,∞). Considering as is a positive real number, we have

(i) For the strictly increasing sequence {as}, it is clear that

Pi (0) = (ai − ai−1) (ai−1 − ai−2) . . . (a2 − a1) a1 > 0.

Then, we have ci(0) = 0. Thus, the number of distinct zeros of Pi (λ) in interval (x, y) for x ∈
(0, λı) and y ∈ (λıı,∞) is

ci(y) − ci(x) = ci(∞) − ci(0) = i.

Because the number of zeros of Pi (λ) is i, we can say that all the zeros of Pi (λ) are in interval
(x, y) for x ∈ (0, λı) and y1 ∈ (λıı,∞) . Thus, all the zeros of Pi (λ) are distinct and positive
for 1 ≤ i ≤ n. In other words, all eigenvalues of the n × n matrixAmin are distinct and positive.
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(ii) For the strictly decreasing sequence {as}, the sign of

Pi (0) = (ai − ai−1) (ai−1 − ai−2) . . . (a2 − a1) a1

is (−1)i−1. Hence, we have ci(0) = i − 1. Thus, the number of zeros of Pi (λ) in interval (x, y) for
x ∈ (0, λı) and y ∈ (λıı,∞) is

ci(y) − ci(x) = ci(∞) − ci(0) = i − (i − 1) = 1.

That is, Pi (λ) has one eigenvalue in interval (0,∞).
Now, we show that the n × n matrix Amin has n − 1 distinct eigenvalues in interval (−∞, 0). The
sign of Pi (λ) does not change in interval (−∞, λı) and ci(x) = ci(−∞) for x ∈ (−∞, λı) . Since the
number of distinct zeros of Pi (λ) in interval (x, y) is ci(y)− ci(x) = ci(0)− ci(−∞) for x ∈ (−∞, λı)
and y ∈ (λıı, 0) , we must compute the value ci(−∞). Considering Eq (2.6), it is clear that

Pi (−∞) > 0.

Then, the number of sign change of Pi (−∞) is zero. Thus, ci(−∞) = 0, and we have

ci(y) − ci(x) = ci(0) − ci(−∞) = (i − 1) − 0 = i − 1.

Since the number of zeros of Pi (λ) is i, and one of the zeros is positive, remaining i − 1 zeros of
Pi (λ) are in interval (x, y) for x ∈ (−∞, λı) and y ∈ (λıı, 0) . Hence, Pn (λ) has n− 1 eigenvalues in
interval (−∞, 0). This shows that one of the eigenvalues of the n × n matrix Amin is positive, and
the remaining n − 1 eigenvalues are distinct and negative.

�

Remark 2.2. We note that, we use the notations Pi (∞) and ci(∞) in the proof of Theorem 2.4, rather
than limλ→∞ Pi (λ) and limλ→∞ ci (λ), respectively.

Theorem 2.5. If the real sequence {as} is positive, and either strictly increasing or strictly decreasing,
then the eigenvalues of i × i and (i − 1) × (i − 1) matricesAmin are interlaced for 2 ≤ i ≤ n. That is,

λ(i)
1 > λ(i−1)

1 > λ(i)
2 > λ(i−1)

2 > . . . > λ(i−1)
i−1 > λ(i)

i ,

where λ(i)
s ’s are the eigenvalues of the i × i matricesAmin for s = 1, 2, . . . , i.

Proof. Theorems 1.2 and 2.3 give the desired result immediately. �

Remark 2.3. Our results work even if the real sequence {as} is negative and strictly decreasing (or
strictly increasing). If bs = −as, then bs is a positive real number, the sequence {bs} is strictly increasing
(or strictly decreasing). Since Amin = −Bmin, all eigenvalues of Bmin have opposite sign with all
eigenvalues ofAmin. For example, for the negative, either strictly increasing or strictly decreasing real
sequence {as}:

(i) If {as} is strictly decreasing, then all eigenvalues of the n×n matrixAmin are distinct and negative,
(ii) If {as} is strictly increasing, then one of the eigenvalues of the n × n matrix Amin is negative, and

the remaining n − 1 eigenvalues are distinct and positive.
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3. An example

In this section, we illustrate our results with the following example.
Consider the real sequence {as} with the elements as = 2s − 1. Then, the 5 × 5 Min matrix

corresponding to this sequence is

Amin =
[
amin(i, j)

]5

i, j=1
=


1 1 1 1 1
1 3 3 3 3
1 3 5 5 5
1 3 5 7 7
1 3 5 7 9


,

and its Hadamard inverse is

A
◦(−1)
min =

[
1

amin(i, j)

]5

i, j=1

=



1 1 1 1 1

1
1
3

1
3

1
3

1
3

1
1
3

1
5

1
5

1
5

1
1
3

1
5

1
7

1
7

1
1
3

1
5

1
7

1
9



.

Theorem 2.1 yields the characteristic polynomials of the i × i (2 ≤ i ≤ 5) matricesAmin andA◦(−1)
min as

Pi (λ) = 2 (1 − λ) Pi−1 (λ) − λ2Pi−2 (λ)

and

Qi (µ) = −2
(

1
aiai−1

+ µ

)
Qi−1 (µ) − µ2Qi−2 (µ) .

Thus,
P0 (λ) = 1,
P1 (λ) = 1 − λ,
P2 (λ) = 2 (1 − λ) (1 − λ) − λ2 = λ2 − 4λ + 2,
P3 (λ) = 2 (1 − λ)

(
λ2 − 4λ + 2

)
− λ2 (1 − λ) = −λ3 + 9λ2 − 12λ + 4,

P4 (λ) = 2 (1 − λ)
(
−λ3 + 9λ2 − 12λ + 4

)
− λ2

(
λ2 − 4λ + 2

)
= λ4 − 16λ3 + 40λ2 − 32λ + 8,

P5 (λ) = 2 (1 − λ)
(
λ4 − 16λ3 + 40λ2 − 32λ + 8

)
− λ2

(
−λ3 + 9λ2 − 12λ + 4

)
= −λ5 + 25λ4 − 100λ3 + 140λ2 − 80λ + 16,

(3.1)
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and

Q0 (µ) = 1,
Q1 (µ) = 1 − µ,

Q2 (µ) = −2
(
1
3

+ µ

)
(1 − µ) − µ2 = µ2 −

4
3
µ −

2
3
,

Q3 (µ) = −2
(

1
15

+ µ

) (
µ2 −

4
3
µ −

2
3

)
− µ2 (1 − µ) = −µ3 +

23
15
µ2 +

68
45
µ +

4
45
,

Q4 (µ) = −2
(

1
35

+ µ

) (
−µ3 +

23
15
µ2 +

68
45
µ +

4
45

)
− µ2

(
µ2 −

4
3
µ −

2
3

)
= µ4 −

176
105

µ3 −
3848
1575

µ2 −
416

1575
µ −

8
1575

,

Q5 (µ) = −2
(

1
63

+ µ

) (
µ4 −

176
105

µ3 −
3848
1575

µ2 −
416
1575

µ −
8

1575

)
− µ2

(
−µ3 +

23
15
µ2 +

68
45
µ +

4
45

)
= −µ5 +

563
315

µ4 +
113396
33075

µ3 +
51292
99225

µ2 +
368

19845
µ +

16
99225

.

(3.2)
If we compute Pi≤5 (λ) and Qi≤5 (µ) using det (Amin − λI) and det

(
A
◦(−1)
min − µI

)
for i ≤ 5 respectively,

we obtain the same results as above.
There are the following relations between the coefficients of the characteristic polynomials given in

Eq (3.1) considering the form of Pn (λ) = λn +γ(n)
n−1λ

n−1 + . . .+γ(n)
1 λ+γ(n)

0 as mentioned in Theorem 2.2,
we have the coefficients as

γ(1)
0 = (−a1 + a0) γ(0)

0 = (−1 + 0) 1 = −1,
γ(2)

0 = (−a2 + a1) γ(1)
0 = (−3 + 1) (−1) = 2,

γ(3)
0 = (−a3 + a2) γ(2)

0 = (−5 + 3) (2) = −4,
γ(4)

0 = (−a4 + a3) γ(3)
0 = (−7 + 5) (−4) = 8,

γ(5)
0 = (−a5 + a4) γ(4)

0 = (−9 + 7) (8) = −16,
γ(2)

1 = (−a2 + a1) + 2γ(1)
0 = (−3 + 1) + 2γ(1)

0 = −4,
γ(3)

1 = (−a3 + a2) γ(2)
1 + 2γ(2)

0 = (−5 + 3) (−4) + 2 (2) = 12,
γ(4)

1 = (−a4 + a3) γ(3)
1 + 2γ(3)

0 = (−7 + 5) (12) + 2 (−4) = −32,
γ(5)

1 = (−a5 + a4) γ(4)
1 + 2γ(4)

0 = (−9 + 7) (−32) + 2 (8) = 80,
γ(3)

2 = (−a3 + a2) + 2γ(2)
1 − γ

(1)
0 = (−3 + 1) + 2 (−4) − (−1) = −9,

γ(4)
2 = (−a4 + a3) γ(3)

2 + 2γ(3)
1 − γ

(2)
0 = (−5 + 3) (−9) + 2 (12) − (2) = 40,

γ(5)
2 = (−a5 + a4) γ(4)

2 + 2γ(4)
1 − γ

(3)
0 = (−7 + 5) (40) + 2 (−32) − (−4) = −140,

γ(4)
3 = (−a4 + a3) + 2γ(3)

2 − γ
(2)
1 = (−7 + 5) + 2 (−9) − (−4) = −16,

γ(5)
3 = (−a5 + a4) γ(4)

3 + 2γ(4)
2 − γ

(3)
1 = (−7 + 5) (−16) + 2 (40) − (12) = 100,

γ(5)
4 = (−a5 + a4) + 2γ(4)

3 − γ
(3)
2 = (−9 + 7) + 2 (−16) − (−9) = −25.

Considering the values

det (Amin) = 1 (3 − 1) (5 − 3) (7 − 5) (9 − 7) = 16,

tr (Amin) = 1 + 3 + 5 + 7 + 9 = 25,

we observe that the equalities given in Theorem 2.2 are provided for the 5×5 matrixAmin. For example

AIMS Mathematics Volume 8, Issue 7, 17229–17245.



17241

γ(5)
0 = −16 (−1)5 det (Amin)

and
γ(5)

4 = −25 = −tr (Amin) .

The relations for the coefficients of the characteristic polynomials of the matrixA◦(−1)
min given in Eq (3.2)

can be obtained similarly.
The roots of Pi≤5 (λ) and Qi≤5 (µ) (or the eigenvalues of i × i (i ≤ 5) matrices Amin and A◦(−1)

min ,
respectively) are

λ(1)
1 = 1,

λ(2)
1 = 3.41, λ(2)

2 = 0.59,
λ(3)

1 = 7.46, λ(3)
2 = 1, λ(3)

3 = 0.54,
λ(4)

1 = 13.1, λ(4)
2 = 1.62, λ(4)

3 = 0.723, λ(4)
4 = 0.520,

λ(5)
1 = 20.4, λ(5)

2 = 2.42, λ(5)
3 = 1, λ(5)

4 = 0.630, λ(5)
5 = 0.512,

and
µ(1)

1 = 1,
µ(2)

1 = 1.72, µ(2)
2 = −0.383,

µ(3)
1 = 2.229, µ(3)

2 = −0.063, µ(3)
3 = −0.63,

µ(4)
1 = 2.64, µ(4)

2 = −0.025, µ(4)
3 = −0.091, µ(4)

4 = −0.847,
µ(5)

1 = 2.991, µ(5)
2 = −0.013, µ(5)

3 = −0.034, µ(5)
4 = −0.114, µ(5)

5 = −1.042,

where λ(i)
s and µ(i)

s denote the roots of Pi≤5 (λ) and Qi≤5 (µ), respectively for s = 1, 2, . . . , i. Hence, we
have

• Pi≤5 (λ) and Qi≤5 (µ) do not vanish for λ = µ = 0.
• Pi≤4 (λ) and Pi+1 (λ) (or Qi≤4 (µ) and Qi+1 (µ)) have not a common zero.
• The sets of zeros of both Pi≤5 (λ) and Qi≤5 (µ) are discrete.
• If Pi≤4 (λ) = 0, then Pi−1 (λ) Pi+1 (λ) < 0. For example, since P2 (1) = −1, P3 (1) = 0,

P4 (1) = 1, we have P2 (1) P4 (1) = −1 < 0. Similarly, if Qi≤4 (µ) = 0, then Qi−1 (λ) Qi+1 (λ) < 0.
For example, since Q2 (−0.063) = −0.579, Q3 (−0.063) = 0, Q4 (−0.063) = 0.002, we have
Q2 (−0.063) Q4 (−0.063) = −0.001 < 0.
• If Pi (λ0) = 0 and Qi (µ0) = 0, then for sufficiently small ε1, ε2 > 0,

Pi−1 (λ0) [Pi (λ0 + ε2) − Pi (λ0 − ε1)] < 0,

and
Qi−1 (µ0)

[
Qi (µ0 + ε2) − Qi (µ0 − ε1)

]
< 0,

where 1 ≤ i ≤ 5. For example, since

P3 (1) = 0, P2 (1) = −1, P3

(
1 +

1
100

)
= 0.031, P3

(
1 −

1
1000

)
= −0.003,

we have

P2 (1)
[
P3

(
1 +

1
100

)
− P3

(
1 −

1
1000

)]
= −0.034 < 0,
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where ε1 =
1

1000
, ε2 =

1
100

. Similarly, since

Q4 (2.64) = 0, Q3 (2.64) = −3.635, Q4

(
2.64 +

1
10000

)
= 0.01, Q4

(
2.64 −

1
100

)
= −0.248,

we have

Q3 (2.64)
[
Q4

(
2.64 +

1
10000

)
− Q4

(
2.64 −

1
100

)]
= −0.938 < 0,

where ε1 =
1

100
, ε2 =

1
10000

.
• The sequences P0 (λ), P1 (λ), P2 (λ), P3 (λ), P4 (λ), P5 (λ), and Q0 (µ), Q1 (µ), Q2 (µ), Q3 (µ),

Q4 (µ), Q5 (µ) have the Sturm sequence properties.
• All of eigenvalues of the i × i (i ≤ 5) matrices Amin (or the zeros of Pi≤5 (λ)) are distinct and

positive. Also one of the eigenvalues of the i × i (i ≤ 5) matrices A◦(−1)
min (or the zeros of Qi≤5 (µ))

is positive, and the remaining i − 1 eigenvalues are distinct and negative.
• The eigenvalues of the i × i and (i − 1) × (i − 1) matrices Amin are interlaced for 2 ≤ i ≤ 5. For

example,

λ(5)
1 = 20.4 > λ(4)

1 = 13.1 > λ(5)
2 = 2.42 > λ(4)

2 = 1.62 >
λ(5)

3 = 1 > λ(4)
3 = 0.723 > λ(5)

4 = 0.630 > λ(4)
4 = 0.520 > λ(5)

5 = 0.512.

Similarly, the eigenvalues of the i × i and (i − 1) × (i − 1) matrices A◦(−1)
min are interlaced for 2 ≤

i ≤ 5. For example,

µ(5)
1 = 2.991 > µ(4)

1 = 2.64 > µ(5)
2 = −0.013 > µ(4)

2 = −0.025 >
µ(5)

3 = −0.034 > µ(4)
3 = −0.091 > µ(5)

4 = −0.114 > µ(4)
4 = −0.847 > µ(5)

5 = −1.042.

Finally, we compute the number of eigenvalues of the 5×5 matrixAmin in intervals (0, 2) and (2, 25).
So then, we need the number of sign changes of Pi≤5 (λ) for λ = 0, λ = 2, and λ = 25. Table 1 serves
this need.

Table 1. The number of sign changes of Pi≤5 (λ) for λ = 0, λ = 2, and λ = 25.

Characteristic polynomials of the i × i (i ≤ 5) matricesAmin
Sign of Pi (λ)

for λ = 0
Sign of Pi (λ)

for λ = 2
Sign of Pi (λ)

for λ = 25
P0 (λ) = 1 + + +

P1 (λ) = 1 − λ + − −

P2 (λ) = λ2 − 4λ + 2 + − +

P3 (λ) = −λ3 + 9λ2 − 12λ + 4 + + −

P4 (λ) = λ4 − 16λ3 + 40λ2 − 32λ + 8 + − +

P5 (λ) = −λ5 + 25λ4 − 100λ3 + 140λ2 − 80λ + 16 + − −

Number of sign changes c5(0) = 0 c5(2) = 3 c5(25) = 5

From Table 1, we have c5(0) = 0, c5(2) = 3, and c5(25) = 5, where c5(α) denotes the number of
changes in sign of Pi≤5 (α). Thus, the number of eigenvalues of the 5×5 matrixAmin in interval (0, 2) is
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c5 (2)−c5 (0) = 3−0 = 3, and the number of eigenvalues in interval (2, 25) is c5 (25)−c5 (2) = 5−3 = 2.
Really, the eigenvalues of the 5 × 5 matrixAmin are 20.4, 2.42, 1, 0.630, and 0.512.

Similarly, we compute the number of eigenvalues of the 5 × 5 matrix A◦(−1)
min in intervals (−2, 0)

and (0, 3). Table 2 includes the number of sign changes of Qi≤5 (µ) for µ = −2, µ = 0, and µ = 3.

Table 2. The number of sign changes of Qi≤5 (µ) for µ = −2, µ = 0, and µ = 3.

Characteristic polynomials of the i × i (i ≤ 5) matricesA◦(−1)
min

Sign of Qi (µ)
for µ = −2

Sign of Qi (µ)
for µ = 0

Sign of Qi (µ)
for µ = 3

Q0 (µ) = 1 + + +

Q1 (µ) = 1 − µ + + −

Q2 (µ) = µ2 −
4
3
µ −

2
3

+ − +

Q3 (µ) = −µ3 +
23
15
µ2 +

68
45
µ +

4
45

+ + −

Q4 (µ) = µ4 −
176
105

µ3 −
3848
1575

µ2 −
416
1575

µ −
8

1575
+ − +

Q5 (µ) = −µ5 +
563
315

µ4 +
113396
33075

µ3 +
51292
99225

µ2 +
368

19845
µ +

16
99225

+ + −

Number of sign changes c5(−2) = 0 c5(0) = 4 c5(3) = 5

According to Table 2, we have c5(−2) = 0, c5(0) = 4, and c5(3) = 5. Thus, the number of
eigenvalues of the 5× 5 matrixA◦(−1)

min in interval (−2, 0) is c5 (0)− c5 (−2) = 4− 0 = 4, and the number
of eigenvalues in interval (0, 3) is c5 (3) − c5 (0) = 5 − 4 = 1. Really, the eigenvalues of the 5 × 5
matrixA◦(−1)

min are 2.991,−0.013,−0.034,−0.114, and −1.042.

4. Conclusions

In this paper, we obtained a recurrence relation for the characteristic polynomials of the real
symmetric Min matrix Amin =

[
amin(i, j)

]n

i, j=1
, where as’s are the elements of a real sequence {as}. We

also gave some relations between the coefficients of the characteristic polynomials of this matrix.
Additionally, we obtained that the sequence of the characteristic polynomials of the i × i (i ≤ n) Min
matrices satisfies the Sturm sequence properties considering different required conditions for the real
sequence {as}. We showed that the eigenvalues of the i×i and (i − 1)×(i − 1) Min matrices are interlaced
as a consequence of Sturm’s Theorem, where 2 ≤ i ≤ n. It is well known that the eigenvalues of real
symmetric matrices are real; we specified how many of the real eigenvalues are positive, and how many
are negative of the n × n matricesAmin with the help of Sturm’s Theorem.
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linéaires, présenté à l’Académie des sciences, In: Collected works of Charles François Sturm,
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