Research article

On a class of three coupled fractional Schrödinger systems with general nonlinearities

  • Received: 25 December 2022 Revised: 16 March 2023 Accepted: 20 March 2023 Published: 17 May 2023
  • MSC : 35A01, 35B38, 35J50

  • In this paper, a class of systems of three-component coupled nonlinear fractional Schrödinger equations with general nonlinearities is investigated. Without any monotonicity condition and the Ambrosetti-Rabinowitz growth condition, we obtain some novel existence results of least energy solutions by using variational arguments and a Pohozaev manifold method.

    Citation: Dengfeng Lu, Shuwei Dai. On a class of three coupled fractional Schrödinger systems with general nonlinearities[J]. AIMS Mathematics, 2023, 8(7): 17142-17153. doi: 10.3934/math.2023875

    Related Papers:

  • In this paper, a class of systems of three-component coupled nonlinear fractional Schrödinger equations with general nonlinearities is investigated. Without any monotonicity condition and the Ambrosetti-Rabinowitz growth condition, we obtain some novel existence results of least energy solutions by using variational arguments and a Pohozaev manifold method.



    加载中


    [1] G. M. Bisci, V. D. Rǎdulescu, Ground state solutions of scalar field fractional Schrödinger equations, Calculus Var. Partial Differ. Equations, 54 (2015), 2985–3008. https://doi.org/10.1007/s00526-015-0891-5 doi: 10.1007/s00526-015-0891-5
    [2] J. Byeon, O. Kwon, J. Seok, Nonlinear scalar field equations involving the fractional Laplacian, Nonlinearity, 30 (2017), 1659–1681. https://doi.org/10.1088/1361-6544/aa60b4 doi: 10.1088/1361-6544/aa60b4
    [3] X. Chang, Z. Q. Wang, Ground state of scalar field equations involving fractional Laplacian with general nonlinearity, Nonlinearity, 26 (2013), 479–494. https://doi.org/10.1088/0951-7715/26/2/479 doi: 10.1088/0951-7715/26/2/479
    [4] P. Felmer, A. Quaas, J. G. Tan, Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian, Proc. R. Soc. Edinburgh Sect. A, 142 (2012), 1237–1262. https://doi.org/10.1017/S0308210511000746 doi: 10.1017/S0308210511000746
    [5] A. Fiscella, P. Pucci, Degenerate Kirchhoff $(p, q)$-fractional systems with critical nonlinearities, Fract. Calculus Appl. Anal., 23 (2020), 723–752. https://doi.org/10.1515/fca-2020-0036 doi: 10.1515/fca-2020-0036
    [6] Q. Guo, X. M. He, Least energy solutions for a weakly coupled fractional Schrödinger system, Nonlinear Anal., 132 (2016), 141–159. https://doi.org/10.1016/j.na.2015.11.005 doi: 10.1016/j.na.2015.11.005
    [7] H. Hajaiej, Some fractional functional inequalities and applications to some constrained minimization problems involving a local non-linearity, arXiv, 2011. https://doi.org/10.48550/arXiv.1104.1414
    [8] Q. He, Y. Peng, Infinitely many solutions with peaks for a fractional system in $\mathbb{R}^{N}$, Acta Math. Sci., 40 (2020), 389–411. https://doi.org/10.1007/s10473-020-0207-5 doi: 10.1007/s10473-020-0207-5
    [9] N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268 (2000), 298–305. https://doi.org/10.1016/S0375-9601(00)00201-2 doi: 10.1016/S0375-9601(00)00201-2
    [10] R. Lehrei, L. A. Maia, Positive solutions of asymptotically linear equations via Pohozaev manifold, J. Funct. Anal., 266 (2014), 213–246. https://doi.org/10.1016/j.jfa.2013.09.002 doi: 10.1016/j.jfa.2013.09.002
    [11] E. H. Lieb, M. Loss, Analysis: second edition, American Mathematical Society, 2001.
    [12] D. F. Lü, S. J. Peng, On the positive vector solutions for nonlinear fractional Laplacian systems with linear coupling, Discrete Contin. Dyn. Syst., 37 (2017), 3327–3352. https://doi.org/10.3934/DCDS.2017141 doi: 10.3934/DCDS.2017141
    [13] L. A. Maia, E. Montefusco, B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger system, J. Differ. Equations, 229 (2006), 743–767. https://doi.org/10.1016/j.jde.2006.07.002 doi: 10.1016/j.jde.2006.07.002
    [14] E. D. Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
    [15] Y. J. Park, Fractional Polya-Szegö inequality, J. Chungcheong Math. Soc., 24 (2011), 267–271.
    [16] A. Pomponio, Ground states for a system of nonlinear Schrödinger equations with three wave interaction, J. Math. Phys., 51 (2010), 093513. https://doi.org/10.1063/1.3486069 doi: 10.1063/1.3486069
    [17] T. Saanouni, On coupled nonlinear Schrödinger systems, Arab. J. Math., 8 (2019), 133–151. https://doi.org/10.1007/s40065-018-0217-5 doi: 10.1007/s40065-018-0217-5
    [18] R. J. Xu, R. S. Tian, Infinitely many vector solutions of a fractional nonlinear Schrödinger system with strong competition, Appl. Math. Lett., 132 (2022), 108187. https://doi.org/10.1016/j.aml.2022.108187 doi: 10.1016/j.aml.2022.108187
    [19] J. B. Zuo, V. D. Rǎdulescu, Normalized solutions to fractional mass supercritical NLS systems with Sobolev critical nonlinearities, Anal. Math. Phys., 12 (2022), 140. https://doi.org/10.1007/s13324-022-00753-y doi: 10.1007/s13324-022-00753-y
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1068) PDF downloads(41) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog