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1. Introduction

In this paper, we study the following three-component coupled fractional Schrödinger system:

(−∆)αu1 + ω1u1 = f1(u1) + λu2u3 in Rd,

(−∆)αu2 + ω2u2 = f2(u2) + λu1u3 in Rd,

(−∆)αu3 + ω3u3 = f3(u3) + λu1u2 in Rd,

u j ∈ Hα(Rd), j = 1, 2, 3,

(1.1)

where α ∈ (0, 1), d > 2α, ω j > 0, j = 1, 2, 3, λ > 0 is a coupling parameter and the fractional Laplacian
(−∆)α is given by

(−∆)αw(x) = Cd,αP.V.
∫
Rd

w(x) − w(y)
|x − y|d+2α dy = Cd,α lim

ϵ→0+

∫
|x−y|>ϵ

w(x) − w(y)
|x − y|d+2α dy,
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where

Cd,α = α(1 − α)4α
Γ( d

2 + α)

π
d
2Γ(2 − α)

is a normalization constant, P.V. is the Cauchy principal value. We are dedicated to the existence of
least energy solutions for system (1.1).

The fractional Laplacian operator (−∆)α arises in several physical phenomena like fractional
quantum mechanics and flames propagation, in population dynamics and geophysical fluid dynamics.
In addition, (−∆)α also arises in modeling diffusion and transport in a highly heterogeneous medium,
or is used as an effective diffusion in a limiting advection-diffusion equation with a random velocity
field. In [9], Laskin introduced the fractional Laplacian equation by expanding the Feynman path
integral from the Brownian-like to the Lévy-like quantum mechanical paths. For more motivations
and backgrounds, we refer the interested readers to [9, 14] and references therein. From the
mathematicians point of view, one of the main difficulties lies in that the fractional Laplacian (−∆)α is
a nonlocal operator.

Over the past few years, the following fractional Schrödinger equation has drawn many researchers’
a great deal of attention

(−∆)αu + u = f (x, u), (1.2)

where α ∈ (0, 1). Equation (1.2) arises in looking for standing wave solutions for the fractional
Schrödinger equation

i
∂Ψ

∂t
= (−∆)αΨ + Ψ − f (x,Ψ), (1.3)

where i andΨ denote the imaginary unit and the wave function, respectively. Different approaches have
been applied to deal with problem (1.2) under various hypotheses on the nonlinearity f , and several
existence and nonexistence results via variational methods are obtained, see for example, [1–3] and the
references therein. Recently, Guo and He [6] considered the system

(−∆)αu + u = (|u|2q + b|u|q−1|v|q+1)u in Rd,

(−∆)αv + ω2αv = (|v|2q + b|v|q−1|u|q+1)v in Rd,

u, v ∈ Hα(Rd),

(1.4)

where α ∈ (0, 1), ω > 0, b > 0, 2q+ 2 ∈ (2, 2∗α). They, with the application of Nehari manifold method,
proved (1.4) has a least energy solution. They also proved that if b is large enough, system (1.4)
has a positive least energy solution with both nontrivial components by using the similar arguments as
in [13]. In [12], Lü and Peng investigated the following two-component coupled fractional Schrödinger
system 

(−∆)αu + u = f (u) + βv in Rd,

(−∆)αv + v = g(v) + βu in Rd,

u, v ∈ Hα(Rd).

(1.5)

Under some suitable assumptions on the nonlinear terms f and g, they obtained the existence of positive
solutions with both nontrivial components and least energy solutions with both nontrivial components
for (1.5) by using variational methods. They also proved the asymptotic behavior of these solutions
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as the coupling parameter β → 0. More results concerning the fractional Schrödinger systems (1.4)
and (1.5), can be seen in [5, 8, 17–19].

To our best knowledge, there is no result in the literature on the existence result for three coupled
fractional Schrödinger systems with general nonlinearities. We will prove some existence results for
system (1.1). On a broader scale, this paper presumes that f j( j = 1, 2, 3) meet the conditions below:
(A1) f j ∈ C1(R,R) and f j(t) = o(t)(t → 0+).
(A2) There exist q j ∈ (2, 2∗α) such that lim

|t|→+∞

f j(t)

|t|q j−1 = 0, where 2∗α =
2d

d−2α is the fractional critical
exponent.
(A3) There exist T j > 0 such that F j(T j) >

ω j

2 T 2
j , where F j(t) :=

∫ t

0
f j(s)ds.

When λ = 0, system (1.1) is converted to three uncoupled equations

(−∆)αu j + ω ju j = f j(u j), u j ∈ Hα(Rd), j = 1, 2, 3. (1.6)

In [2, 3], it is proved that if f j satisfy (A1)–(A3), (1.6) possesses a positive least energy solution u⋆j for
j = 1, 2, 3. Hence, for all λ ∈ R, the pairs (u⋆1 , 0, 0), (0, u⋆2 , 0) and (0, 0, u⋆3 ) solve system (1.1). In this
paper this sort of solutions (i.e., solutions with at least one trivial component) is called as semi-trivial
solutions. An appealing question is whether the system (1.1) contains solutions (u1, u2, u3) such that
u1, u2, u3 . 0 under the conditions (A1)–(A3), such kind of solutions will be called fully nontrivial
solutions. The major results are the following:

Theorem 1.1. Suppose that f j satisfy (A1) − (A3) for j = 1, 2, 3 and 2α < d < 6α. Then

(i) for any λ > 0, the system (1.1) has a least energy solution,
(ii) there exists λ∗ > 0 such that for every λ > λ∗, the system (1.1) has a fully nontrivial least energy

solution.

Remark 1.1. Theorem 1.1 can be thought of as an extension of the results in [3,6,16]. We note that in
our assumptions (A1)–(A3) neither any monotonicity condition nor any Ambrosetti-Rabinowitz growth
condition is required, and we need a new method different from those used in [3, 6, 16].

The structure of the other parts of the paper is as follows. In Section 2, some notations and
preliminary results are proposed. In Section 3, we conclude the proof of Theorem 1.1.

2. Preliminaries

Throughout this paper, C,Ci will signify different kinds of positive constants; the strong
convergence is denoted by→, and the weak convergence denoted by⇀; Bρ(y) denotes a ball centered
at y with radius ρ > 0; ∥u∥Lq(Rd) = (

∫
Rd |u|qdx)

1
q denote the norm of Lq(Rd). The fractional Sobolev

space Hα(Rd) is marked as

Hα(Rd) =
{

w ∈ L2(Rd) :
|w(x) − w(y)|

|x − y|
d
2+α

∈ L2(R2d)
}
,

endowed with the norm

∥w∥Hα(Rd) =

(∫
Rd

∫
Rd

|w(x) − w(y)|2

|x − y|d+2α dxdy + ∥w∥2L2(Rd)

) 1
2

,
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where

[w]Hα(Rd) =

( ∫
Rd

∫
Rd

|w(x) − w(y)|2

|x − y|d+2α dxdy
) 1

2

is the so-called Gagliardo semi-norm of w. Via Fourier transform, we have

(̂−∆)αu(ξ) = |ξ|2αû(ξ) for ξ ∈ Rd,

where the symbol ̂ stands for Fourier transform. Therefore, by the Fourier transform, Hα(Rd) can be
equivalently defined as follows

Hα(Rd) =
{

u ∈ L2(Rd) :
∫
Rd
|ξ|2α |̂u(ξ)|2dξ < ∞

}
,

and the norm can be equivalently written

∥u∥Hα(Rd) =

(∫
Rd
|ξ|2α |̂u(ξ)|2dξ + ∥u∥2L2(Rd)

) 1
2

.

From Propositions 3.4 and 3.6 in [14], for any w ∈ Hα(Rd), we have

∥(−∆)
α
2 w∥2L2(Rd) =

Cd,α

2

∫
Rd

∫
Rd

|w(x) − w(y)|2

|x − y|d+2α dxdy =
∫
Rd
|ξ|2α|ŵ(ξ)|2dξ.

We also use the following notations:
(1)Dα,2(Rd) is completion of C∞0 (Rd) concerning the norm

∥w∥Dα,2(Rd) =

(∫
Rd
|(−∆)

α
2 w|2dx

) 1
2

.

(2) For ω j > 0, j = 1, 2, 3, we use the notation

∥w∥ωi =

(∫
Rd

(|(−∆)
α
2 w|2 + ωiw2)dx

) 1
2

,

which is an equivalent norm to ∥w∥Hα(Rd).
(3)

H = Hα(Rd) × Hα(Rd) × Hα(Rd)

with the norm
∥(u1, u2, u3)∥2 = ∥u1∥

2
ω1
+ ∥u2∥

2
ω2
+ ∥u3∥

2
ω3

and
Hr = Hαr (Rd) × Hαr (Rd) × Hαr (Rd),

where
Hαr (Rd) =

{
w ∈ Hα(Rd) : w(x) = w(|x|)

}
.

For the fractional Sobolev spaces, the embedding results below can be got in [14].
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Lemma 2.1. If α ∈ (0, 1) and d > 2α, then

(i) Dα,2(Rd) is continuously embedded into L2∗α(Rd), i.e.,

∥w∥2
L2∗α (Rd)

≤ C∥(−∆)
α
2 w∥2L2(Rd)

for any w ∈ Dα,2(Rd), where constant C depending only on d, α.
(ii) Hα(Rd) ↪→ Lq(Rd) is continuous for any q ∈ [2, 2∗α].

(iii) Hα(Rd) ↪→ Lq
loc(R

d) is compact for any q ∈ [1, 2∗α); Hαr (Rd) ↪→ Lq(Rd) is compact for any q ∈
(2, 2∗α).

3. Proof of Theorem 1.1

This section is devoted to proving the Theorem 1.1. Define a functional related to system (1.1) by

Φλ(u1, u2, u3) =
3∑

j=1

I j(u j) − λ
∫
Rd

u1u2u3dx, (3.1)

where for j = 1, 2, 3,

I j(u j) =
1
2

∫
Rd

(
|(−∆)

α
2 u j|

2 + ω j|u j|
2
)

dx −
∫
Rd

F j(u j)dx.

On the basis of the conditions (A1)–(A3), one can easily verify that Φλ is well defined and C1. Now,
we define the Pohozaev set by

Nλ = {(u1, u2, u3) ∈H \ {(0, 0, 0)} : N(u1, u2, u3) = 0} ,

where

N(u1, u2, u3) =
3∑

j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) − 2∗α

∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1

ω j|u j|
2 +

3∑
j=1

F j(u j)
)
dx.

From (A1)–(A3), if (u1, u2, u3) ∈ H is a weak solution to system (1.1), using the similar regularity
arguments as in [2], we can get u j ∈ C1(Rd) for j = 1, 2, 3. Then it is classical to confirm that each
nontrivial solution of (1.1) belongs to Nλ. Moreover, we have

Lemma 3.1. Let the conditions (A1)–(A3) hold, then

(i) Nλ is a C1 manifold,
(ii) for any (u1, u2, u3) ∈ Nλ, there exists constant ϱ0 > 0 such that ∥(u1, u2, u3)∥ ≥ ϱ0,

(iii) if ui ∈ Hα(Rd) \ {0} and N(u1, u2, u3) ≤ 0, then exists a unique t̄ ∈ (0, 1] such that

(ut̄
1, u

t̄
2, u

t̄
3) ∈ Nλ,

where ut
i(x) = ui(t−1x).
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Proof. (i) From (A1)–(A3), we know that N(u1, u2, u3) is a C1 functional, in order to prove Nλ is a
C1 manifold, it suffices to prove that N ′(u1, u2, u3) , 0 for all (u1, u2, u3) ∈ Nλ. Indeed, assume by
contradiction that N ′(u1, u2, u3) = 0 for some (u1, u2, u3) ∈ Nλ. Then in a weak sense, (u1, u2, u3) can
be seen as a solution of the system

(−∆)αu1 +
2∗α
2 ω1u1 =

2∗α
2 f1(u1) + 2∗α

2 λu2u3 in Rd,

(−∆)αu2 +
2∗α
2 ω2u2 =

2∗α
2 f2(u2) + 2∗α

2 λu1u3 in Rd,

(−∆)αu3 +
2∗α
2 ω3u3 =

2∗α
2 f3(u3) + 2∗α

2 λu1u2 in Rd.

(3.2)

As a consequence, we see that (u1, u2, u3) satisfies the Pohozaev type identity referred to (3.2), that is∫
Rd
|(−∆)

α
2 u1|

2dx +
∫
Rd
|(−∆)

α
2 u2|

2dx +
∫
Rd
|(−∆)

α
2 u3|

2dx

=
(2∗α)

2

2

∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1

ω j|u j|
2 +

3∑
j=1

F j(u j)
)
dx. (3.3)

Since N(u1, u2, u3) = 0, by (3.3) we deduce that(
1 −

2
2∗α

) 3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) = 0,

which implies that u j = 0 for all j = 1, 2, 3, which is a contradiction since (u1, u2, u3) ∈ Nλ. Thus Nλ
is a C1 manifold.
(ii) Let (u1, u2, u3) ∈ Nλ, then we have

3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) +

2∗α
2

3∑
j=1

∫
Rd
ω j|u j|

2dx = 2∗α

∫
Rd

(
λu1u2u3 +

3∑
j=1

F j(u j)
)
dx. (3.4)

From the conditions (A1) and (A2), we know that, for any ϵ > 0, there is Cϵ > 0 such that

| f j(t)| ≤ ϵ |t| +Cϵ |t|q j−1, |F j(t)| ≤ ϵ|t|2 +Cϵ |t|q j , j = 1, 2, 3. (3.5)

Then by (3.4), (3.5) and the Sobolev embedding inequality, one has

∥(u1, u2, u3)∥2 = ∥u1∥
2
ω1
+ ∥u2∥

2
ω2
+ ∥u3∥

2
ω3

≤ C1

∫
Rd

(|u1|
q1 + |u2|

q2 + |u3|
q3 + u1u2u3)dx

≤ C2
(
∥u1∥

q1
ω1
+ ∥u2∥

q2
ω2
+ ∥u3∥

q3
ω3
+ ∥u1∥

3
ω1
+ ∥u2∥

3
ω2
+ ∥u3∥

3
ω3

)
,

which implies that ∥(u1, u2, u3)∥ ≥ ϱ0 for some positive constant ϱ0 > 0 since q1, q2, q3 > 2.
(iii) Let u1, u2, u3 ∈ Hα(Rd) \ {0} satisfy N(u1, u2, u3) ≤ 0, then

0 <
3∑

j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) ≤ 2∗α

∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1

ω j|u j|
2 +

3∑
j=1

F j(u j)
)
dx. (3.6)
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For t > 0, let ut
j = u j(t−1x), j = 1, 2, 3, we define

h(t) :=Φλ(ut
1, u

t
2, u

t
3)

=
td−2α

2

3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) − td

∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1

ω j|u j|
2 +

3∑
j=1

F j(u j)
)
dx.

Obviously, h(t) → −∞ as t → +∞. Moreover, h(t) > 0 for t > 0 small enough. In fact, from (A1)
and (A2), for any ϵ > 0, there is Cϵ > 0 such that for all τ ∈ R,

|F j(τ)| ≤ ϵ|τ|2 +Cϵ |τ|2
∗
α , j = 1, 2, 3. (3.7)

Then by (3.7), Hölder inequality and Lemma 2.1(i), we get

h(t) ≥
td−2α

2

3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) −Ctd

3∑
j=1

∫
Rd
|u j|

2∗αdx

≥
td−2α

2

3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) −C0td

3∑
j=1

∥(−∆)
α
2 u j∥

2∗α
L2(Rd),

which yields that h(t) > 0 when t > 0 sufficiently small. Hence, we can find t̄ > 0 such that h(t) has a
positive maximum and h′(t̄) = 0. Notice that

N(ut
1, u

t
2, u

t
3) = th′(t) = t

dΦλ(ut
1, u

t
2, u

t
3)

dt
,

so we get N(ut̄
1, u

t̄
2, u

t̄
3) = 0. Furthermore, by N(ut̄

1, u
t̄
2, u

t̄
3) = 0, we can deduce that

t̄ =


3∑

j=1
∥(−∆)

α
2 u j∥

2
L2(Rd)

2∗α
∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1
ω j|u j|

2 +
3∑

j=1
F j(u j)

)
dx


1

2α

.

By (3.6), we know that t̄ ∈ (0, 1]. Hence, t̄ ∈ (0, 1] is the unique critical point of h(t) corresponding to
its maximum. □

Let us define the least energy

cλ = inf
(u1,u2,u3)∈Nλ

Φλ(u1, u2, u3). (3.8)

We call that a minimizer on Nλ is a least energy solution for system (1.1). By the proof of
Lemma 3.1(ii) and (iii), it is clear that the functional Φλ satisfies the mountain-pass geometry. Let c∗

be the minmax mountain-pass level for the functional Φλ given by

c∗ = inf
γ∈Λ

sup
0≤t≤1
Φλ(γ(t)),

where
Λ = {γ ∈ C([0, 1],H ) : γ(0) = 0,Φλ(γ(1)) < 0}.

Arguing as in the proof of Lemma 4.2 in [10], we can get that cλ = c∗ > 0.

AIMS Mathematics Volume 8, Issue 7, 17142–17153.
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Lemma 3.2. (u1, u2, u3) is a solution of system (1.1) provided cλ is attained at (u1, u2, u3) ∈ Nλ, where
cλ is defined in (3.8).

Proof. Suppose that (u1, u2, u3) ∈ Nλ such that Φλ(u1, u2, u3) = cλ. Then by the theory of Lagrange
multipliers, there exists a Lagrange multiplier µ ∈ R such that

Φ′λ(u1, u2, u3) − µN ′(u1, u2, u3) = 0.

As a consequence, (u1, u2, u3) satisfies the following Pohozaev type identity

N(u1, u2, u3) = µ

 3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) −

(2∗α)
2

2

∫
Rd

(
λu1u2u3 −

1
2

3∑
j=1

ω j|u j|
2 +

3∑
j=1

F j(u j)
)
dx

 . (3.9)

Notice that N(u1, u2, u3) = 0, from (3.4) and (3.9) we obtain

µ
(
1 −

2∗α
2

) 3∑
j=1

∥(−∆)
α
2 u j∥

2
L2(Rd) ≡ 0,

which implies that µ = 0. Thus Φ′λ(u1, u2, u3) = 0, and so (u1, u2, u3) is a solution of system (1.1). □

Lemma 3.3. Let α ∈ (0, 1) and d > 2α. Suppose that {wn} is a bounded sequence in Hα(Rd) and

lim
n→∞

sup
z∈Rd

∫
BR(z)
|wn|

2dx = 0 for some R > 0.

Then wn → 0 in Lq(Rd) for every q ∈ (2, 2∗α).

The above vanishing lemma has been proved in [4] (see Lemma 2.2). Then we have:

Lemma 3.4. If {(u1,n, u2,n, u3,n)} ⊂ Nλ is a bounded sequence, there exists a sequence {zn} ⊂ R
d and

constants R, η > 0 such that

lim inf
n→∞

∫
BR(zn)

(
|u1,n|

2 + |u2,n|
2 + |u3,n|

2)dx ≥ η > 0.

Proof. Arguing from the reversed point, suppose that the conclusion does not hold, then for every
R > 0, one has

sup
z∈Rd

∫
BR(z)
|u j,n|

2dx→ 0(n→ ∞), j = 1, 2, 3. (3.10)

By (3.10) and Lemma 3.3, we obtain that for all r ∈ (2, 2∗α), u j,n → 0 in Lr(Rd) for j = 1, 2, 3.
Furthermore, notice that {(u1,n, u2,n, u3,n)} ⊂ Nλ, then we can deduce that (u1,n, u2,n, u3,n) → (0, 0, 0) in
H . On the other hand, from Lemma 3.1(ii), we have ∥(u1,n, u2,n, u3,n)∥ ≥ ϱ0 for some ϱ0 > 0, so we get
a contradiction, the proof is finished. □

Lemma 3.5. Suppose that f j satisfy (A1)–(A3) for j = 1, 2, 3 and 2α < d < 6α. Then for each λ > 0,
there exists

(ũ1λ, ũ2λ, ũ3λ) ∈ Nλ,

such that
Φλ(ũ1λ, ũ2λ, ũ3λ) = cλ.
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Proof. Suppose {(u1,n, u2,n, u3,n)} ⊂ Nλ such that

Φλ(u1,n, u2,n, u3,n)→ cλ(n→ ∞).

Let (u∗1,n, u
∗
2,n, u

∗
3,n) be the Schwarz symmetrization of (u1,n, u2,n, u3,n), by the fractional Polya-Szegö

inequality (see Theorem 2.1 in [7] or Theorem 1.1 in [15]) and the properties of the Schwarz
symmetrization (see Lieb-Loss [11]) and Lemma 3.1(iii), there exists t̃n ∈ (0, 1] such that

(ũ1,n, ũ2,n, ũ3,n) :=
(
u∗1,n

(
x
t̃n

)
, u∗2,n

(
x
t̃n

)
, u∗3,n

(
x
t̃n

))
∈ Nλ

and
Φλ(ũ1,n, ũ2,n, ũ3,n) ≤ Φλ(u1,n, u2,n, u3,n).

Hence we can assume that u1,n, u2,n and u3,n are radial, i.e.,

{(u1,n, u2,n, u3,n)} ⊂ Nλ ∩Hr.

First, we note that {(u1,n, u2,n, u3,n)} is bounded in Hr. Indeed, since {(u1,n, u2,n, u3,n)} ⊂ Nλ, we have
N(u1,n, u2,n, u3,n) = 0, then we infer that

Φλ(u1,n, u2,n, u3,n) =
α

d

3∑
j=1

∥(−∆)
α
2 u j,n∥

2
L2(Rd) = cλ + on(1). (3.11)

By (3.11), we get that {u j,n} are bounded in Dα,2(Rd) for all j = 1, 2, 3. On the other hand, since
{(u1,n, u2,n, u3,n)} ⊂ Nλ and note that 2∗α > 3, then by (3.4), (3.7), Young inequality and Lemma 2.1, we
can deduce that ∥u j,n∥L2(Rd) are bounded for j = 1, 2, 3. Therefore, {(u1,n, u2,n, u3,n)} is bounded in Hr,
and then there exist u1, u2, u3 ∈ Hαr (Rd) such that for j = 1, 2, 3,

u j,n ⇀ u j, in Hαr (Rd),
u j,n → u j, a.e. in Rd,

u j,n → u j, in Lr(Rd), 2 < r < 2∗α.

From Lemma 3.4, we know that there exists {zn} ⊂ R
d and constants R, η > 0 satisfying∫

BR(zn)

(
|u1,n|

2 + |u2,n|
2 + |u3,n|

2)dx ≥ η > 0. (3.12)

Now we define

(̃u1,n(x), ũ2,n(x), ũ3,n(x)) = (u1,n(x + zn), u2,n(x + zn), u3,n(x + zn)),

from the invariance of Rd by translations, then {(̃u1,n(x), ũ2,n(x), ũ3,n(x))} is also a minimizing sequence
for cλ. Hence, by arguing as we did for {(u1,n, u2,n, u3,n)}, passing to a subsequence, we can assume that

(̃u1,n, ũ2,n, ũ3,n)⇀ (ũ1, ũ2, ũ3)

in Hr, (̃u1,n, ũ2,n, ũ3,n)→ (ũ1, ũ2, ũ3) in L2
loc(R

d) × L2
loc(R

d) × L2
loc(R

d). Additionally, by (3.12),

lim inf
n→∞

∫
BR(0)

(
|̃u1,n|

2 + |̃u2,n|
2 + |̃u3,n|

2)dx ≥ η > 0. (3.13)
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From (3.13), one has ∫
BR(0)

(
|ũ1|

2 + |ũ2|
2 + |ũ3|

2)dx ≥ η > 0,

and so (ũ1, ũ2, ũ3) , (0, 0, 0). On the other hand, since

{(̃u1,n(x), ũ2,n(x), ũ3,n(x))} ⊂ Nλ

passing to the limit, we get

N(ũ1, ũ2, ũ3) ≤ lim inf
n→∞

N (̃u1,n, ũ2,n, ũ3,n) = 0,

then by Lemma 3.1(iii) there is t̃ ∈ (0, 1] such that

(ũ1λ, ũ2λ, ũ3λ) :=
(
ũ1

( x
t̃

)
, ũ2

( x
t̃

)
, ũ3

( x
t̃

))
∈ Nλ ∩Hr.

Thus we have

cλ ≤ Φλ(ũ1λ, ũ2λ, ũ3λ) =
α

d

3∑
j=1

∥(−∆)
α
2 ũ jλ∥

2
L2(Rd)

=
αt̃d−2α

d

3∑
j=1

∥(−∆)
α
2 ũ j∥

2
L2(Rd)

≤
α

d

3∑
j=1

∥(−∆)
α
2 ũ j∥

2
L2(Rd)

≤ lim inf
n→∞

α

d

3∑
j=1

∥(−∆)
α
2 ũ j,n∥

2
L2(Rd)

= lim
n→∞
Φλ(̃u1,n, ũ2,n, ũ3,n) = cλ,

hence Φλ(ũ1λ, ũ2λ, ũ3λ) = cλ and (ũ1λ, ũ2λ, ũ3λ) is a minimizer of Φλ restricted to Nλ. □

Now the proof of Theorem 1.1 will be presented.

Proof of Theorem 1.1. (i) From Lemma 3.5, we know that there exists

(ũ1λ, ũ2λ, ũ3λ) ∈ Nλ ∩Hr,

such that Φλ(ũ1λ, ũ2λ, ũ3λ) = cλ. Then by Lemma 3.2, we have that Φ′λ(ũ1λ, ũ2λ, ũ3λ) = 0, that is,
(ũ1λ, ũ2λ, ũ3λ) is a least energy solution for the system (1.1). The Theorem 1.1(i) is proved.
(ii) For j = 1, 2, 3, let u⋆j ∈ Hαr (Rd) be the positive least energy solutions respectively for Eq (1.6).
Then it is easy to see that N(u⋆1 , u

⋆
2 , u

⋆
3 ) ≤ 0, from Lemma 3.1(iii), there is t∗ > 0 such that

(u⋆1 (
x
t∗

), u⋆2 (
x
t∗

), u⋆3 (
x
t∗

)) ∈ Nλ.

Notice that the pairs (u⋆1 , 0, 0), (0, u⋆2 , 0) and (0, 0, u⋆3 ) solve system (1.1), and system (1.1) has no
solutions with exactly one trivial component. Now, on the basis of idea from [13] (or see [6]), to
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indicate the radial least energy solution of system (1.1) is a fully nontrivial least energy solution, we
just need to prove that, for λ > 0 sufficiently large,

Φλ
(
u⋆1 (

x
t∗

), u⋆2 (
x
t∗

), u⋆3 (
x
t∗

)
)
< min

{
Φλ(u⋆1 , 0, 0),Φλ(0, u⋆2 , 0),Φλ(0, 0, u⋆3 )

}
. (3.14)

Indeed, by some calculations, we can infer that

Φλ
(
u⋆1 (

x
t∗

), u⋆2 (
x
t∗

), u⋆3 (
x
t∗

)
)
=

α
d

( 3∑
j=1

∫
Rd |(−∆)

α
2 u⋆j |

2dx
) d

2α

(
2∗α

∫
Rd

( 3∑
j=1

F j(u⋆j ) + λ|u⋆1 u⋆2 u⋆3 | −
1
2

3∑
j=1
ω j|u⋆j |2

)
dx

) d−2α
2α

.

Therefore, when λ > 0 large enough, (3.14) holds. Thus the Theorem 1.1(ii) follows. □

4. Conclusions

In this paper, we are interested in studying a class of systems of three-component coupled nonlinear
fractional Schrödinger equations with general nonlinearities. In our assumptions (A1)–(A3) neither any
monotonicity condition nor any Ambrosetti-Rabinowitz growth condition is required, so we need to
overcome several difficulties when using variational methods. By using a Pohozaev manifold method
and variational arguments, we establish some novel existence results of least energy solutions for the
three-component coupled fractional Schrödinger system (1.1). We believe that the proposed approach
in this paper can also be applied to study other related equations and systems.
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