Research article

Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces

  • Received: 22 December 2022 Revised: 23 April 2023 Accepted: 02 May 2023 Published: 16 May 2023
  • MSC : 42B20, 42B25, 42B35

  • In this paper, we establish the boundedness of rough $ p $-adic fractional integral operators on $ p $-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough $ p $-adic fractional integral operator and $ p $-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.

    Citation: Yanlong Shi, Xiangxing Tao. Rough fractional integral and its multilinear commutators on $ p $-adic generalized Morrey spaces[J]. AIMS Mathematics, 2023, 8(7): 17012-17026. doi: 10.3934/math.2023868

    Related Papers:

  • In this paper, we establish the boundedness of rough $ p $-adic fractional integral operators on $ p $-adic generalized Morrey spaces, as well as the boundedness of multilinear commutators generated by rough $ p $-adic fractional integral operator and $ p $-adic generalized Campanato functions. Moreover, the boundedness in classical Morrey is given as corollaries.



    加载中


    [1] A. Khrennikov, $p$-Adic valued distributions in mathematical physicss, Springer Science & Business Media, 1994. https://doi.org/10.1007/978-94-015-8356-5
    [2] M. Taibleson, Fourier analysis on local fields, Princeton University Press, 1975.
    [3] S. Haran, Riesz potentials and explicit sums in arithmetic, Invent. Math., 101 (1990), 697–703. https://doi.org/10.1007/BF01231521 doi: 10.1007/BF01231521
    [4] S. Haran, Analytic potential theory over the $p$-adics, Ann. I. Fourier, 43 (1993), 905–944. https://doi.org/10.5802/aif.1361 doi: 10.5802/aif.1361
    [5] Y. Kim, A simple proof of the $p$-adic version of the Sobolev embedding theorem, Commun. Korean Math. S., 25 (2010), 27–36. https://doi.org/10.4134/CKMS.2010.25.1.027 doi: 10.4134/CKMS.2010.25.1.027
    [6] S. Volosivets, Maximal function and Reisz potential on $p$-adic linear spaces, $p$-Adic Num. Ultrametr. Anal. Appl., 5 (2013), 226–234. https://doi.org/10.1134/S2070046613030059 doi: 10.1134/S2070046613030059
    [7] S. Volosivets, Generalized fractional integrals in $p$-adic Morrey and Herz spaces, $p$-Adic Num. Ultrametr. Anal. Appl., 91 (2017), 53–61. https://doi.org/10.1134/S2070046617010058 doi: 10.1134/S2070046617010058
    [8] T. Abdeljawad, S. Rashid, H. Khan, Y. Chu, On new fractional integral inequalities for $p$-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [9] M. Bohner, O.Tunc, C. Tunc, Qualitative analysis of caputo fractional integro-differential equations with constant delays, Comp. Appl. Math., 40 (2021), 214. https://doi.org/10.1007/s40314-021-01595-3 doi: 10.1007/s40314-021-01595-3
    [10] I. Iscan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
    [11] A. Khrennikov, V. Shelkovich, Non-Haar $p$-adic wavelets and their application to pseudo-differential operators and equations, Appl. Comput. Harmon. A., 28 (2014), 1–23. https://doi.org/10.1016/j.acha.2009.05.007 doi: 10.1016/j.acha.2009.05.007
    [12] L. Grafakos, Modern Fourier analysis, New York: Springer, 2009. https://doi.org/10.1007/978-0-387-09434-2
    [13] Y. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013 (2013), 196459. https://doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459
    [14] Q. Wu, Z. Fu, Hardy-Littlewood-Sobolev inequalities on $p$-adic central Morrey spaces, J. Funct. Space., 2015 (2015), 419532. https://doi.org/10.1155/2015/419532 doi: 10.1155/2015/419532
    [15] H. Mo, X. Wang, R. Ma, Commutator of Riesz potential in $p$-adic generalized Morrey spaces, Front. Math. China, 13 (2018), 633–645. https://doi.org/10.1007/s11464-018-0696-x doi: 10.1007/s11464-018-0696-x
    [16] Y. L. Shi, Y. F. Shi, S. Chen, $p$-Adic Riesz potential and its commutators on Morrey-Herz spaces, J. Funct. Space., 2022 (2022), 7227544. https://doi.org/10.1155/2022/7227544 doi: 10.1155/2022/7227544
    [17] N. Sarfraz, M. Aslam, M. Zaman, F. Jarad, Estimates for $p$-adic fractional integral operator and its commutators on $p$-adic Morrey-Herz spaces, J. Inequal. Appl., 2022 (2022), 92. https://doi.org/10.1186/s13660-022-02829-6 doi: 10.1186/s13660-022-02829-6
    [18] N. Sarfraz, F. Jarad, Estimates for a Rough fractional integral operator and its commutators on $p$-adic central Morrey spaces, Fractal. Fract., 6 (2022), 117. https://doi.org/10.3390/fractalfract6020117 doi: 10.3390/fractalfract6020117
    [19] N. Sarfraz, M. Aslam, Some estimates for $p$-adic fractional integral operator and its commutators on $p$-adic Herz spaces with rough kernels, Fract. Calc. Appl. Anal., 25 (2022), 1734–1755. https://doi.org/10.1007/s13540-022-00064-w doi: 10.1007/s13540-022-00064-w
    [20] H. Mo, Z. Han, L. Yang, J. Wang, $p$-adic singular integrals and their commutators in generalized Morrey spaces, J. Inequal. Appl., 2019 (2019), 65. https://doi.org/10.1186/s13660-019-2009-7 doi: 10.1186/s13660-019-2009-7
    [21] Z. Fu, Q. Wu, S. Lu, Sharp estimates of $p$-adic hardy and Hardy-Littlewood-Pólya operators, Acta. Math. Sin., 29 (2013), 137–150. https://doi.org/10.1007/s10114-012-0695-x doi: 10.1007/s10114-012-0695-x
    [22] K. P. Ho, Definability of singular integral operators on Morrey-Banach spaces, J. Math. Soc. Japan, 72 (2020), 155–170. https://doi.org/10.2969/jmsj/81208120 doi: 10.2969/jmsj/81208120
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1023) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog