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1. Introduction

In the past few decades, p-adic analysis has gathered a lot of attention by its applications in many
aspects of mathematical physics, such as quantum mechanics, the probability theory and the
dynamical systems [1]. Significantly, the geometry of the field of p-adic numbers is surprisingly
unlike the geometry of the real numbers field R, in particular the Archimedean axiom is not true in the
field of p-adic numbers [2]. Therefore, p-adic analysis has also gained impeccable attraction in
harmonic analysis [3-7].

In p-adic harmonic analysis, fractional calculus is a key area because of its heap of applications in
engineering science and technology, see for instance [8,9]. Also, fractional integral operators (Riesz
potentials) are significant in the mathematical analysis as they construct and formulate inequalities
which have several applications in scientific areas that can be found in the existing literature [10, 11].
The boundedness criteria of fractional integral operators on different functional spaces is a key area not
only in harmonic analysis but also in partial differential equations, differentiation theory and potential
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theory [12, 13]. In this connection, the fractional integral operator in p-adic analysis is defined by

1-p? f(y)
T? f(x) =
#0021 o Ix-yh,”

dy, 0<pB<n.

Here, Q) consists of all points X = (xi,--- ,x,) for n € N, where x; € Q,(j = 1,---,n) and Q,, is the
field of p-adic numbers.

When n = 1, Haran [3,4] not only obtained the explicit formula of the fractional integral operator
Tg on Q, but also developed the analytical potential theory on Q7. Taibleson [2] gave the fundamental
analytic properties of Tg on local fields, including Q’, as well as the classical Hardy-Littlewood-
Sobolev theorem (also see [5]). Moreover, Volosivets [6,7] showed that T/‘;' is bounded on radial Morrey
spaces. In 2015, Wu and Fu [14] established Hardy-Littlewood-Sobolev inequalities on p-adic central
Morrey spaces and A-central BMO estimates for commutators of Tg . In 2018, Mo et al. [15] showed
the boundedness of Tg on p-adic generalized Morrey spaces, as well as the boundedness of multilinear
commutators generated by Tg and generalized Campanato functions. In 2022, both Shi et al. [16] and
Sarfraz et al. [17] studied the boundedness of T[’; and its commutators on Morrey-Herz spaces. At the
same time, Sarfraz and Jarad [18] considered the roughness of the operator 77, they introduced rough
fractional integral operator Tg o- In the form, Tg o has the following integral expression

Q
ng F) = fQ (yl,y)f(y) dy. (1.1)

n—3
» |X - y|p

for suitable measurable mappings f : Q) —» Rand Q : § 0(0) - R. When f € L1Q)), 1 < g < oo,
by the same way in the book [2], Sarfraz and Jarad [18] showed the boundedness of Tg o on Lebesgue
spaces (see Lemma 2.2 in Section 2). Furthermore, they obtained the boundedness of T[f, o on p-adic

central Morrey spaces, as well as the A-central BMO estimates for commutator T[f,’ ’é defined by

77 f(%) = IQ n (b(x) = b(Y)Ayl,Y) f(¥) dy.

x -yl 7"
In [19], Sarfraz and Aslam showed the boundedness of Té” o and T;; ’g on p-adic Herz spaces.

We observe above works, the boundedness of Tp{” o on generalized Morrey spaces are remains open.
Therefore, in this paper, we are going to devote to the boundedness of Tg o on p-adic generalized
Morrey spaces. Moreover, let b = (b, by, -+ ,b,,) with b; € LIOC(Q;) forl <i<m,meN, we will
consider multilinear commutator defined by

[T, (Bi(x) — bi(y)) Qyl,y) f(y) p
Q x -yl "

Thof () = :
and investigate the boundedness of T; ’:; on p-adic generalized Morrey spaces with symbols in
Campanato spaces. It should be emphasized that our results are new and cover some existing results
of Tf and T ,.

Our paper is organized as follows. In Section 2, we present some notations and preliminaries. In
Section 3, we present our main results. In Section 4, we will give the proof of main results. Throughout
this paper, ¢’ = g/(g— 1) for 1 < g < oo and ¢ = oo when g = 1, the letter C will be used to denote
various constants,.
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2. Preliminaries

We begin this section with recalling some preliminaries of p-adic analysis pertaining to our work.
For a prime number p, let Q, be the field of p-adic numbers defined as the completion of the field of
rational numbers Q with respect to non-Archimedean p-adic normal | - |,. This normal | - |, is defined
as follows: if x = 0, [0], = O; if x # O is an arbitrary rational number with the unique representation
x = p’m/n, where m, n are not divisible by p, y = y(x) € Z, then |x|, = p™. It’s not hard to see that
the norm satisfies the following properties:

Mlxl, >20,Yx€Q,and [x[, =0 & x = 0;

(1) [xylp = Ixlplylp, Vo, y € Qp;

(i) |x + yl, < max(|xl,,|yl,), Vx,y € Q, and when |x|, # |y|,, we have |x + y|, = max(|x],, [y|,).

It is also well known that any non-zero p-adic number x € Q, can be uniquely represented in the
canonical series

x=p'(xo+xip+xp’ 4+, 2.1

where y = y(x) € Z, x, € {0,1,--- ,p—1}, xg # 0, k = 0,1,---. The series (2.1) converges in the
p-adic norm because |x;pt|, = p7*.
The p-adic norm of Q) = Q X Q X - -+ X Q is defined by

[Xl, = max lxjl,, X =(x,00e,x) €Q, (2.2)
Denote by
B,(a)={x€Q}:|x—al, <p’},
the ball of radius p” with center at a € Q') and write B = {By(a) caeQl,yve Z}. If let
S,(@) = B,(a)\ B,-1(a) = {x € Q} : [x—al, = p’},

the sphere of radius p” with center at a € Q”, it is easy to see that

B,(@) = |_JSua).

k<y

Since the space Q' is a locally compact commutative group under addition, there exists the Haar
measure dx on the additive group of Q7 normalized by fBO dx = |Byg| = 1, where By := By(0) and |E]|
denotes the Haar measure of a measurable set E C Q). Then by a simple calculation, the Haar measures
of any balls and spheres can be obtained. Especially, we frequently use

|B,@)| = p™, |S,@)|=p"(1-p™), VaecQ

For a more complete introduction to the p-adic analysis, we refer the readers to [2] and the references
therein.

Now, let us give the definitions of generalized Morrey spaces and generalized Campanato spaces on
the p-adic number field as follows.
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Definition 2.1. [I5] Let 1 < g < oo, B,(a) be a ball in Q}, and w(x) be a non-negative measurable
Junction in Q). A function f € Ll (Qy) is said to belong to the generalized Morrey space L¥“(Q)), if

loc

1/q
1 1
q,w ny — qd OO,
11 Ch) yezlile)@” w(By(a))(|By(a)|HfB|f(y)| Y] <

where w(B,(a)) = [, . w(X)dx.

Notice that if let w(B,(a)) = |B,(a)|', then L*“(Q}) is the classical Morrey spaces M,(Q).
Moreover, if let 4 € R and B,(a) = B,(0), then L+(Q}) is the central Morrey spaces
Bq’”(QZ) (see [14,18]) defined by

1/q
1
gy = sup| f F@ldy| <.
B+4(Qp) | (0)|1+/1q B,0)

Definition 2.2. [I5] Let 1 < g < oo, B,(a) be a ball in Q}, and w(x) be a non-negative measurable
Junction in Q7. A function f € Ll (Qy) is said to belong to the generalized Campanato space L%“(Q)),

if

loc

sup !
yeZaEQ" (U(By(a)) (|B7( )|

_ 1
wherefp a) = B, fo @ f(x)dx.

We invoke the following result.

1/q
||f||£q,w(Q;) = flf(Y) fo(a)| dY] < 0o,

Lemma 2.1. [75,20] Let 1 < g < o0 and w be a non-negative measurable function. Suppose that
b e L7(Qy), then

|b,@ = by < Ik = jl11bl] gy max o (Be(@) , w (By(@))}

for any j k € Z and any fixed a € Q. Thus, for j > k, we have

1/q
( fB . b - ka(a>|") <(j+ 1=k |Bj@)," o (B@) bl sy -
j@

In addition, for A < 1/n, if let B,(a) = |By(a)|/l in Definition 2.2, then L"’“’(QZ) = BMO‘“(Q;).
Moreover, let B,(a) = B,(0), then Lq"”(QZ) is the A-central BMO space CBMO’M(Q;) (see [14, 18])

defined by
1 1/q
q
—Mf |f(Y) - fo(0)| dy] < oo.
B, /50

Furthermore, when A = 0, the particular case of CBMO‘”(Q’;) is CBMO?(Qy}) defined in [21].
Now, we present two desired lemmas which will be used in the proof of our main results.

Il f1lcemo- Q= SUP[
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Lemma22. [I8]LetO<B<n 1<qg<r<o, 1/r=1/g-pB/n Qe L/ (S0) and f € LY(Q).
(i) If ¢ > 1, then
1750 iy < Clfllagy)-

(ii) If g = 1, for any o > 0, then

ANl @) )r

(o

'{x € QLT f0] > 0'}|H < c(

Lemma23. Let0 < <n 1 <g<r<oo, l/r=1/qg-p/n Qe LI (Sy0), f € L(Q}) and v is a
non-negative measurable functionin Q. For any B,(a) € B, then

Q(yl,y)| 1f ()l N
f <>| - ! {;y dy < Cllflluay D P™Bi@), x € By(@).
B;’a

n
Ix = ylp k=y+1

Proof. For any x € B,(a), we have |x — a|, < p”. For any y satisfying p*! < |y —a|, < p* for

some k > y + 1, the property (ii) of | - |, shows that <y - al, < max(x —yl|,,[x — al,), the
inequality |x — al, < p? < p*~! guarantees that |x — y|, > p*~!. Consequently, by Hélder’s inequality,
we have

|2(yl,y)| 1f W) [Qy1,)| £
n— ‘iy':: n— Ciy
Bi@  [X—Yl, y-al,>pr X =Yl,

i Q
. f |1,y Ji(y» iy
k:’}/+1 Pk2|y—a|p>[’k_l |X - ylp
<c D p 0 [ laawrwldy
x(a)

k=y+1 s

(o)

RN V74 1/q
Oy p P eyl dy F)I dy
Sk(a) Sk(@)

k=y+1
v+

IA

(o)

, l/q /g
c Y pted ( | Jauyr dy) ( | If(y)l"dY) .
k=y+1 Si(a) By(a)

Let nonzeroy € Q) has aformy = (yi,---,y,), applying (2.1), we proceed as

IA

i 2 s _
yvi=piay;+ap+tayp +---), i=1,--,n

Then there exists iy € {1,--- ,n} such that |y; |, = p™ > p™ = |y;|,, whenever y; # 0. Using (2.2), we
obtain |y|, = p~%. It follows that

|| | | :| ~Yip | = max YipTVi = pYio Vo = 1,
ypyl’ p yl’ lsiSn,y,-;&Op p

Thus, for every nonzero y € QZ, the vector |y|,y belongs to sphere §((0) = {y € Q;‘, Slyl, = 1}. Notice
that Q € LY (S((0)), then

f 21y, y)|” dy = f Q@)Y pdz < Cpo.
Sk x],=1
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Hence, we obtain

0 0 ’ 1/q
f [y DI S o ( f O dy)
B;’(a) By(a)

n—-p
X =yl k=y+1

<C ) p P yBy @) B@l, Nl
k=y+1

< Cliflluy ), PPv(Bua)).
k=y+1

Lemma 2.3 is proved.
3. Main results

Before giving the main results in this paper, according to the idea of the article [22], we will first
state how to define the action of Tg o on generalized Morrey spaces.

Definition 3.1. Ler 0 < S < n, 1 < g < o0, Q € L7(S,(0)), Tﬁ o be a fractional integral operator
defined by (1.1), v be a non-negative measurable function such that

(o)

sup thWMW<w~ (3.1)
Y€Z,aeQ); k=y+1

For any f € L*(Q)) and any fixed B,(a) € B, define
Tg,gf(X) = ng(f)(By(a))(X) + T/;Q(fXB§(a))(X)a X € B,(a).

Remark 3.1. For any B,(a) € B and f € L*"(Q}), write f = fxp,@) + fxpi@- We can see that the
definition of L#(Q7}) assures that fxp,a) € L/(Q}), so Lemma 2.3 guarantees that Tg o(fXB,@) is well
defined. Besides that, if v satisfies (3.1), Lemma 2.3 implies

f [Qyl,y)| 1F W)
pwr dy < o
By  |X—Yl,

for x € B,(a). That is, Té” o(fXB:@) is well defined when v satisfies (3.1). Consequently, the linearity
of Tﬁ o on LY(Q)) yields

T! o (Fx5,@)X) + Tho(Fs@)®) = Tho f(X)
for f € L?"(Q}) and x € B,(a) € B.

Now we give the boundedness result of T[‘; o on generalized Morrey spaces in the following.

Theorem 3.1. Let 0 < B <n, 1 < g <r<oo, 1/r=1/g—p/n Q€ L7(S(0)) and f € L+(Q%).
Suppose that w and v are non-negative measurable functions such that

> V(Bi(@)

3.2)
yezaeg; £ W(By(a))

AIMS Mathematics Volume 8, Issue 7, 17012—-17026.
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(i) If ¢ > 1, then
ITf ol < Cll ey

(i))If g =1, forany o > 0, y € Z and a € Q), then

(x € B,G@) : 1T/ > o], e (nfny,v@;) )

w(B,(a)) |By(a)|, o

Remark 3.2. Notice that v satisfy (3.1) if w and v satisfy (3.2). That is, (3.2) assures that Tg o 1s well
defined on L?"(Q7).

Significantly, our results not only extend Theorem 1 in [18] to generalized Morrey spaces, but also
extend Theorem 3.1 in [15] to rough p-adic fractional integral operator. At the same time, for A < —/n
and u = A + B/n, if we take w(B,(a)) = IBY(a)I‘;,, v(B,(a)) = IBy(a)Iﬁ, for any fixed B, (a), it is easy to
check that w and v satisfy (3.2). Hence, by Theorem 3.1, we can obtain the following corollary.
Corollary 3.1. Let0 < B <n 1 <g<r<oo, 1/r=1/qg=B/n, A+B/n <0, u= A+B/n, Q € L7 (S (0))
and f € M;(QZ).

(D)If g > 1, then

”ngf”M’,‘(Qg) < C||f||M;}(Q7,)-

(i)lf g = 1, forany o >0, y € Z and a € Q),, then

1+ru

‘{x € B,(a) : |T£Qf(x)| > cr}'H 3 C[”f”Mf(Q%) )r
5, AR

Our second main result is the boundedness of multilinear commutators generated by rough p-adic
fractional integral operator and p-adic generalized Campanato functions.

Theorem 3.2. Letm e N,0<B8<n,1<q,q1," - ,qu <00, r>n/(n—=B), 1/r=1/q;+---+1/g, +
1/q - B/n and Q € LY (S ¢(0)). Suppose that w, vand v; (i = 1,2,--- ,m) are non-negative measurable

functions, and satisfy
VB @) I By @) Ly

33
yeZaca w(B,(a)) (3.3)
and )
sup Z v(Bi(a)) ni:l vi(Bi(a)) (k—vy+ 1)mp7ﬁ < 00, (3.4

YEZ,acQ), k=y+1 w(By(a))

foranyy € Zand a € Q). If b; € L7(Q}), f € L*(Q}), then

m
b
1T 5o ey < C 1_[ Woill e I Ny
i=1

For0 < 1,42, -+ , Ay < 1/n, A4+ZA:+B/n < 0and p = A+22;+B/n, if we take w(B,(a)) = |B,(a)ly,
v(B,(a)) = IBy(a)li, and v;(B,(a)) = IBy(a)lf{" for any B,(a), it is not difficult to check that w, v and v;
satisfy (3.3) and (3.4). Hence, Theorem 3.2 implies the following corollary.

AIMS Mathematics Volume 8, Issue 7, 17012—-17026.
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Corollary 3.2. Let m e N, 0 < B <n, 1 < q,q1," ,qm < oo, r >nf/(n—=p), 1/r = 1/q; +--- +
1/gm +1/q — B/n and Q € L7 (S¢(0)). Suppose that 0 < Ay, A5, , Ay < 1/n, A+ ZA; + B/n < 0,
p=A+32A; +pB/n. If b e BMO™(Q)), f € MN(QL), then

m
b
T2 Flleegy < C | | Wbillanionop | Fllagiiap-
i=1

If we let b; € CBMO""”I’(Q;), by Corollary 3.2, we will obtain the follwing boundedness of Tg ’;; on
central Morrey spaces.

Corollary 3.3. Letm e N, 0 < B <n 1 < q,q1,** ,qun < oo, r>n/(n—-p), 1/r =1/ +--- +
1/Gm + 1/q — B/n and Q € LY (Sy(0)). Suppose that 0 < A, Ay, -+, A, < 1/n, A+ ZA; + B/n < 0,
u=A+ZA +pB/n Ifb; € CBMO‘I"’A"(QZ), fe B‘f’”‘(QZ), then

m
b
T o gy < C | | IBillcmviona gl Fllamgy.
i=1

Here we point out that Corollary 3.3 extends Theorem 2 in [18] to the multilinear case.
4. Proof of theorems

The proof of Theorem 3.1. As non-negative measurable functions w and v satisfy (3.2), v fulfills (3.1),
so Definition 3.1 assures that T/?, o 18 well defined on L#(Qy}). For f € L#"(Q}) and any fixed B,(a) € B,
it follows that

T!ofX) = T} o(Fxs,@)®) + Tho(fXss@)®. X € By(a).

Consequently, we only need to estimate Tﬁ o XB,@)(X) and Tg o/ X B:@)(X) respectively.
(1) If g > 1, for fixed B,(a), we have

1/r 1/r
Tp rd Tp a rd
w(B,(a)) [|By(a)|H j;y(a)| .ol Xl X] < (B, @) [|By(a)|H ‘fl;y(a)| 5.0 XB,@) (X)) x)

1/r
1 1

T? <(a rd
" (B, @) (|By(a)|H fo(a)l po5@)X)| X]
I+ 11

For I, by the L"-boundedness of Tg o (see Lemma 2.2) and (3.2), it follows that

1/r
1 1
= Ty )X d

1 1 oz
<
= w(B,@) |5, () (fw 7 X)

AIMS Mathematics Volume 8, Issue 7, 17012—-17026.
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B q 1/q
_ 1B | y(a)|1;,/r 1 [ 1 f oo dx)
w(B,(a)) |B @), v(B,(a)) |By(a)|H By(a)
L Y5a) 14 y(a)) o
w(B,(a ))
< N fllzoreap)-

W lloreas)

For 11, Lemma 2.3 yields that

1/r

1 1

) T, (a "d
c‘)(By(a))(|3y(a)| f y(a>| pofE@)(X)| X]

o kﬁ v(Bi(a))
< flloe >kZ;1 (B, (@)

< N fllzoreay)-

Consequently, combining the estimation of / and /1, we have

1/r
1 1
T2 foordx|  <Ifllvon,
w(BV(a))[|By(a)|HfB(a>| pal X X] < ey

Y

which implies the desired inequality ||T£ oS lre@y < Cllfllzeray)-

(i) If ¢ = 1, for fixed B,(a) and Tg o(fxs,@)(X), by the weak L’-boundedness of Tg o (see
Lemma 2.2) and (3.2), we get

(x € By@ : T (@l > o/2}]
c (2||fXBy(a)||L1(Q*;) )r

(o8
v(B,(a)) |B,(@),, ( | 1 f )
d
H [CL)(By(a)) | B,(a) L/’ v(B,(a)) |By(a)| 4 IB,@ 7o

(v(B ,(a)) 5) (”f”leV(Q;,) )r
(By(a)) o

(||f||L1 @) )

For Té” o(FXB;@)(X), by Chebychev’s inequality, Lemma 2.3 and (3.2), we have

< Cw(B

‘{X € B,(a): |T£Q(fXB§(a>)(X)| > 0-/2”H

c ,
<= [ matmmeords
By(a)

AIMS Mathematics Volume 8, Issue 7, 17012—-17026.
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Q r
f [Qdyl,y)|1F W) dyl i
Bj(a)

n—f
|X _'YE7

. f
S —_
.
0" JB,(a)

(j s r
S ; |B7(a)|H ||f||21v(Q7))[ Z PkﬁV(Bk(a))]

k=y+1

(o)

, V(B@) |
By@),, 1110y, [ 27 By(a))]

k=y+1

[V
B,(a)|, (—G ) :

C
< —w(B,(@))
g

< Cw(B,(a))’

Thus, we obtain
fx e B,@ : 1T 001> |,

<|fx e By@ : Tl > 0/2}] +[(x € By@ : 1T fxmw)l > o/2)|
||f||LLV(Q;))r

< Cw(B,(a)) ~

By(a)|H (

Ultimately,

Hx € B,(a) : [T} f(X)] > o-”H e (” Flon )

w(B,(a)) |B,(a)|,,
forany oo > 0, y € Z and a € Q). This completes the proof of Theorem 3.1.
The proof of Theorem 3.2. In order to simplify the proving process, for a positive integer m and 0 <
i < m, we denote by C!" the family of all finite subsets 8 = {6,6,,--- ,6;} of {1,2,--- ,m} of i different
elements, let 6° = {1,2,--- ,m}\@ forany 6 € C". Forb = (by,b,,--- ,b,)and 0 = {6,,6,,--- ,6;} € C"",
set by = (by,, by,, - - , by,) and the product by = by, by, - - - by.. With this notation, we write

(b(X) = bp,)o = (by,(X) = by, g ) -+~ (bg(X) = by, ),
(b, = bg,)o = (bo, g, = ba, ) -+ (by, g = Doy ),

o

and
bollz,, = ballzy s, - 1Ballzyy, -

where 1/g = 1/g, +--- + 1/g; and (B, (a)) = v,(B,(a))---vi(B,(a)) for any ball B,(a). Especially,
wheni=m,0=1{1,2,--- ,m} and 6° = 0, we have b, = b, hence

(b(x) = bp,)o = (b1(X) = big ) -+ (by(X) = byp,), (b(X) = bp e = 1.
Wheni=0,60=0and 6 ={1,2,---,m}, we havebg = b, hence
(b(x) = bp,)g =1, (b(X) = bp)o = (b1(X) = bip) -+ (Du(X) = bup,).
We write b;(x) — b;(y) = (bj(x) — biBy) + (bi(y) — b,-By) fori=1,2,---,m, then

ngf(x) _ f [T, (bi(x) - bi()’)n)_;)(|Y|pY)f(Y)dy
VA Ix—yl,

AIMS Mathematics Volume 8, Issue 7, 17012—-17026.
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fQ LIS 1110 =) + (3) — i) dy

|X ylP i=1

= [ |00 = bis )T} f0 + (=D T}, (ﬂ(b,- - bigy)f] )
i=1 i=1

! | Q
+ Z Z (=1)""(b(X) = bp, ) fn M (b(Y) - bBy)gc dy

i=1 geC’" o x-yl,

= | [@i0) = bis )T f 0 + (<1)"Th (]_[(b,- - b,»B)f] (x)
i=1 i=1

m—1

+ 7 D Db = by )Tl (b= by o f) ()

i=1 6eCy

3 (=1)""(b(x) = b, )eTh, ((b = bp e f ) (X).
B

i=0 geCy"

For f € L¥(Q}), g > 1, let f = fxB,@ + fXBy@ =: /i + /2, then we get

1/r
Toaf )| dx)

1 1
w(By(a)) (|By(a)|H fbj (a)

Y
f By(a)
m

1 f
a)(By(a)) |By(a)|;{/r [ By(a) | =

i=0 geC
= Ji+ /.

ZZ(b(x) bs)oThg (0= b)) fi) (%)

i=0 6eCy"

r 1/r
dx]

r 1/r
dx]
To facilitate estimates J; and J,, set

s=> lq, 1/h=> 1/q, 1lg=1/h+1/q, 1/t=1/g=B/n

6;€0 6;€6¢

1
< 1/r (
w(B,(a)) |B,(a)|,,

(b(X) = by, )g T}, ((b = by ) f2) (X)

and

v(By@) = | [vi(By@), v'B,@) = |viB,@)

6;€0 6;€6¢
then1/r=1/s+ 1/tand g > 1.

First, using Minkowski’s inequality, Holder’s inequality and L'-boundedness of 7% ,, we obtain

B

r 1/r
[ f Z Z (b(x) = bp,)eTh, (b = by o f1) (%) dx]
By(a) i=0 geqn
N r 1/r
<C Z Z (f (b(X) - bBy)GTlI;,Q ((b - bBy)HCfl) (X)‘ dx)
i=0 geC \V By(@)
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oeCy

< CV(B, @) [B,@), " Ifleray Y| Y v (By(@) B (@),

< v(B,(@) |B, @), Il fllzoay ]_[ 1641l covvicayvi(By(@)) | By (@),

J
J
J

Y

Y

Y

|(b(x) = by, )| dx
@

‘L:y(a)

fma)
fB:y(a)

|(b(x) = by, )| dx
@

|(b(x) = by, )| dx
@

1/s

i=0 oeCy

Then, it is not difficult for us to get

I/\

.:5

I/\

B B, @), 1fllvcz
w(B,(a))|B,()|))

PPY(By @)l ey
(B, (@)

i=1

|Ibgll 25 v (B, (2)) | B,(a)|

[ 1/t
720 (b= ba)e 1) )| dx)

1/g
|(b(x) = b)) fi (X[} dx)

1/h
|(b(x) - b37>9c|hdx) ( f
B

1/q
lf dX)

@

Y
1/h
2 el o

1/qi

- g
[ [l 2oy vicBy @) |By ()],

ﬂ 14l ey Vil B, (@)
i=1
v(B,@) [T1, vi(B,(a) ,

b qi-Vi (Q" i
Will oior @yl f 1l o) w(B,(a))

i=1

:]s

bill gavviamll flleavcqn)-

Il
—_

i

Second, we will turn to the estimation of J,. Given x € B,(a), by Holder’s inequality, Minkowski’s
inequality and Lemma 2.1, we have

j];§(a)

p P fs ()lﬂ(lylpwl DI |@(y) = bs)ee| d

<

AIMS Mathematics

k

k

s

e I

o (0= b)) )

1

1

layl,y)| 1£ )l |(b(y) biel ”
x—yl,”

1/h
dy) IS k(@]

—k(n—B)—kn/h+kn/q’ !
pRepnnld (g (@) B(@)l N Lo

, /g’ 1/q
P ( f 2y, dy) ( f If(y)lqu)
1 Sr(@) Si(a)
x( f (6Y) — ba |
Sk(a)
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X

i 1/h N 1/h
( f By) — ba)e| dy) +( f (b, — bs, o] dy) ]
By (a) By (a)

< M1l Z PP (B@)Ibgel g 1 Bi@)ly "y (Be(@)k =y + 1"
k=y+1

< M fllzevap Z PPV (Bi(@)lIbge | g v (Bi(@)(k =y + 1)™.

k=y+1
Then, it follows that

m

1
" I} (b(®) = s )oT 5 (b = ba, ) f2) (0
" w(B,@) |By(a)”’( B(a) Z 2, 8075 (0= bs)o f2)

i=0 6eCy'

r 1/r
dx]

|(b(X)—bBy)9|st o (b= bp e f2) (%) dx
By(a)

i=0 geCl"

v 1/r Z Z V'(By(a)) |By(a)

<
w(B,(@)) |By(a)|,," =0 decr

(o)

X Z PPv(Bi(@))lbge| g1 v (Bi(a))(k — y + 1)™
k=y+1

Cllfllnay Q
< W) S =y + 17 S S VB, @bl oo Bl o

w(By(a)) k=y+1 i=0 geCr

Cllfllisvccy )
< ﬁ;}l VBu@)k -y + 1) pkﬂ]—[nb||Lq,v,<Q,,)v,(Bk(a))

. v(Be@)) [T, vi(Be(@)) -
= b qi-Vi 4V (Q" k_ 1
< ﬂn il sl fll (Q,,)k; sy kv

<
w(B,(a)) |B

1/t

1/s
gl oo 1 fll oy | By (@),

:s :

< C | | Ibill sl fllzarcap)-

1l
—_

i

At last, combining the estimation of J; and J,, we obtain

1/r m
1 f o ,
x)| dx| < C| il aiomll fllreron

for any B,(a) C Q; and f € Lq’V(Q’;)(q > 1), and the proof of Theorem 3.2 is finished.

5. Conclusions

In this article, the boundedness of the rough p-adic fractional integral operator on p-adic generalized
Morrey spaces is studied. In addition, the boundedness for multilinear commutators generated by
rough p-adic fractional integral operator and p-adic generalized Campanato functions is also obtained.
Moreover, the boundedness in classical Morrey is given as corollaries.
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