Research article Special Issues

Study of nonlinear generalized Fisher equation under fractional fuzzy concept

  • Received: 17 February 2023 Revised: 07 April 2023 Accepted: 18 April 2023 Published: 09 May 2023
  • MSC : 34A08, 34A12, 47H10

  • Fractional calculus can provide an accurate model of many dynamical systems, which leads to a set of partial differential equations (PDE). Fisher's equation is one of these PDEs. This article focuses on a new method that is used for the analytical solution of Fuzzy nonlinear time fractional generalized Fisher's equation (FNLTFGFE) with a source term. While the uncertainty is considered in the initial condition, the proposed technique supports the process of the solution commencing from the parametric form (double parametric form) of a fuzzy number. Next, a joint mechanism of natural transform (NT) coupled with Adomian decomposition method (ADM) is utilized, and the nonlinear term is calculated through ADM. The obtained solution of the unknown function is written in infinite series form. It has been observed that the solution obtained is rapid and accurate. The result proved that this method is more efficient and less time-consuming in comparison with all other methods. Three examples are presented to show the efficiency of the proposed techniques. The result shows that uncertainty plays an important role in analytical sense. i.e., as the uncertainty decreases, the solution approaches a classical solution. Hence, this method makes a very useful contribution towards the solution of the fuzzy nonlinear time fractional generalized Fisher's equation. Moreover, the matlab (2015) software has been used to draw the graphs.

    Citation: Muhammad Usman, Hidayat Ullah Khan, Zareen A Khan, Hussam Alrabaiah. Study of nonlinear generalized Fisher equation under fractional fuzzy concept[J]. AIMS Mathematics, 2023, 8(7): 16479-16493. doi: 10.3934/math.2023842

    Related Papers:

  • Fractional calculus can provide an accurate model of many dynamical systems, which leads to a set of partial differential equations (PDE). Fisher's equation is one of these PDEs. This article focuses on a new method that is used for the analytical solution of Fuzzy nonlinear time fractional generalized Fisher's equation (FNLTFGFE) with a source term. While the uncertainty is considered in the initial condition, the proposed technique supports the process of the solution commencing from the parametric form (double parametric form) of a fuzzy number. Next, a joint mechanism of natural transform (NT) coupled with Adomian decomposition method (ADM) is utilized, and the nonlinear term is calculated through ADM. The obtained solution of the unknown function is written in infinite series form. It has been observed that the solution obtained is rapid and accurate. The result proved that this method is more efficient and less time-consuming in comparison with all other methods. Three examples are presented to show the efficiency of the proposed techniques. The result shows that uncertainty plays an important role in analytical sense. i.e., as the uncertainty decreases, the solution approaches a classical solution. Hence, this method makes a very useful contribution towards the solution of the fuzzy nonlinear time fractional generalized Fisher's equation. Moreover, the matlab (2015) software has been used to draw the graphs.



    加载中


    [1] M. Lazarević, M. R. Rapaić, T. B. Šekara, S. B. Stojanovic, D. L. Debeljkovic, Z. Vosika, et al., Advanced topics on applications of fractional calculus on control problems, system stability and modeling, WSEAS Press, 2014.
    [2] O. P. Agarwal, A general formulation and solution scheme for fractional optimal control problems, Nonlinear Dyn., 38 (2004), 323–337. https://doi.org/10.1007/s11071-004-3764-6 doi: 10.1007/s11071-004-3764-6
    [3] M. Dehghan, E. A. Hamedi, H. Khosravian-Arab, A numerical scheme for the solution of a class of fractional variational and optimal control problems using the modified Jacobi polynomials, J. Vibration Control, 22 (2016), 1547–1559. https://doi.org/10.1177/1077546314543727 doi: 10.1177/1077546314543727
    [4] M. D. Ortigueira, J. A. T. Machado, Fractional signal processing and applications, Signal Proc., 83 (2003), 2285–2480.
    [5] R. L. Magin, Fractional calculus models of complex dynamics in biological tissues, Comput. Math. Appl., 59 (2010), 1586–1593. https://doi.org/10.1016/j.camwa.2009.08.039 doi: 10.1016/j.camwa.2009.08.039
    [6] O. P. Agarwal, Solution for a fractional diffusion-wave equation defined in a bounded domain, Nonlinear Dyn., 29 (2002), 145–155. https://doi.org/10.1023/A:1016539022492 doi: 10.1023/A:1016539022492
    [7] D. A. Benson, S. W. Wheatcraft, M. M. Meerschaert, Application of a fractional advection-dispersion equation, Water Resour. Res., 36 (2000), 1403–1412. https://doi.org/10.1029/2000WR900031 doi: 10.1029/2000WR900031
    [8] A. H. Bhrawy, M. A. Zaky, Shifted fractional-order Jacobi orthogonal functions: application to a system of fractional differential equations, Appl. Math. Model., 40 (2016), 832–845. https://doi.org/10.1016/j.apm.2015.06.012 doi: 10.1016/j.apm.2015.06.012
    [9] F. Bulut, Ö. Oruc, A. Esen, Numerical solutions of fractional system of partial differential equations by Haar wavelets, Comput. Model. Eng. Sci., 108 (2015), 263–284. https://doi.org/10.3970/cmes.2015.108.263 doi: 10.3970/cmes.2015.108.263
    [10] W. G. Glöckle, T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics, Biophys. J., 68 (1995), 46–53. https://doi.org/10.1016/S0006-3495(95)80157-8 doi: 10.1016/S0006-3495(95)80157-8
    [11] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63–85. https://doi.org/10.1016/j.fss.2014.04.005 doi: 10.1016/j.fss.2014.04.005
    [12] F. Mainardi, The fundamental solutions for the fractional diffusion-wave equation, Appl. Math. Lett., 9 (1996), 23–28. https://doi.org/10.1016/0893-9659(96)00089-4 doi: 10.1016/0893-9659(96)00089-4
    [13] E. Babolian, A. R. Vahidi, A. Shoja, An efficient method for nonlinear fractional differential equations: combination of the Adomian decomposition method and spectral method, Indian J. Pure Appl. Math., 45 (2014), 1017–1028. https://doi.org/10.1007/s13226-014-0102-7 doi: 10.1007/s13226-014-0102-7
    [14] S. P. Yang, A. G. Xiao, H. Su, Convergence of the variational iteration method for solving multi-order fractional differential equations, Comput. Math. Appl., 60 (2010), 2871–2879. https://doi.org/10.1016/j.camwa.2010.09.044 doi: 10.1016/j.camwa.2010.09.044
    [15] S. H. Hosseinnia, A. Ranjbar, S. Momani, Using an enhanced homotopy perturbation method in fractional differential equations via deforming the linear part, Comput. Math. Appl., 56 (2008), 3138–3149. https://doi.org/10.1016/j.camwa.2008.07.002 doi: 10.1016/j.camwa.2008.07.002
    [16] M. Usman, N. Badshah, F. Ghaffar, Higher order compact finite difference method for the solution of 2-D time fractional diffusion equation, Matrix Sci. Math. (MSMK), 2 (2018), 4–8. https://doi.org/10.26480/msmk.01.2018.04.08 doi: 10.26480/msmk.01.2018.04.08
    [17] Z. Tomovskia, R. Hilferband, H. M. Srivastava, Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions, Integr. Transf. Spec. Funct., 21 (2010), 797–814. https://doi.org/10.1080/10652461003675737 doi: 10.1080/10652461003675737
    [18] A. Mohebbi, M. Abbaszadeh, M. Dehghan, High-order difference scheme for the solution of linear time fractional Klein-Gordon equations, Numer. Methods Part. Differ. Equ., 30 (2014), 1234–1253. https://doi.org/10.1002/num.21867 doi: 10.1002/num.21867
    [19] S. Chen, X. Jiang, F. Liu, I. Turner, High order unconditionally stable difference schemes for the Riesz space-fractional telegraph equation, J. Comput. Appl. Math., 278 (2015), 119–129. https://doi.org/10.1016/j.cam.2014.09.028 doi: 10.1016/j.cam.2014.09.028
    [20] M. Zayermouri, G. E. Karniadakis, Fractioanal spectral collacation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312–338. https://doi.org/10.1016/j.jcp.2014.12.001 doi: 10.1016/j.jcp.2014.12.001
    [21] G. Bengochea, Operational solution of fractional differential equations, Appl. Math. Lett., 32 (2014), 48–52. https://doi.org/10.1016/j.aml.2014.02.011 doi: 10.1016/j.aml.2014.02.011
    [22] S. Murtaza, Z. Ahmad, I. E. Ali, Z. Akhtar, F. Tchier, H. Ahmad, et al., Analysis and numerical simulation of fractal-fractional order non-linear couple stress nanofluid with cadmium telluride nanoparticles, J. King Saud Univ. Sci., 35 (2023), 102618. https://doi.org/10.1016/j.jksus.2023.102618 doi: 10.1016/j.jksus.2023.102618
    [23] F. Ali, Z. Ahmad, M. Arif, I. Khan, K. S. Nisar, A time fractional model of generalized Couette flow of couple stress nanofluid with heat and mass transfer: applications in engine oil, IEEE Access, 8 (2020), 146944–146966. https://doi.org/10.1109/ACCESS.2020.3013701 doi: 10.1109/ACCESS.2020.3013701
    [24] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, Z. Shah, Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044. https://doi.org/10.1016/j.rinp.2021.105044 doi: 10.1016/j.rinp.2021.105044
    [25] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [26] R. P. Agarwal, V. Lakshmikantham, J. J. Nieto, On the concept of solution for fractional differential equations with uncertainty, Nonlinear Anal., 72 (2010), 2859–2862. https://doi.org/10.1016/j.na.2009.11.029 doi: 10.1016/j.na.2009.11.029
    [27] M. Z. Ahmad, M. K. Hasan, S. Abbasbandy, Solving fuzzy fractional differential equations using Zadeh's extension principle, Sci. World J., 2013 (2013), 1–11. https://doi.org/10.1155/2013/454969 doi: 10.1155/2013/454969
    [28] A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, A Jacobi operational matrix for solving a fuzzy linear fractional differential equation, Adv. Differ. Equ., 2013 (2013), 1–29. https://doi.org/10.1186/1687-1847-2013-104 doi: 10.1186/1687-1847-2013-104
    [29] B. Bede, I. J. Rudas, A. L. Bencsik, First order linear fuzzy differential equations under generalized differentiability, Inform. Sci., 177 (2007), 1648–1662. https://doi.org/10.1016/j.ins.2006.08.021 doi: 10.1016/j.ins.2006.08.021
    [30] T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit solutions of fractional differential equations with uncertainty, Soft Comput., 16 (2012), 297–302. https://doi.org/10.1007/s00500-011-0743-y doi: 10.1007/s00500-011-0743-y
    [31] A. Khastan, J. J. Nieto, R. Rodriguez-Lopez, Variation of constant formula for first order fuzzy differential equations, Fuzzy Sets Syst., 177 (2011), 20–33. https://doi.org/10.1016/j.fss.2011.02.020 doi: 10.1016/j.fss.2011.02.020
    [32] D. Takači, A. Takači, A. Takači, On the operational solutions of fuzzy fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 1100–1113. https://doi.org/10.2478/s13540-014-0216-y doi: 10.2478/s13540-014-0216-y
    [33] V. Lakshmikantham, R. N. Mohapatra, Theory of fuzzy differential equations and inclusions, London: CRC Press, 2004. https://doi.org/10.1201/9780203011386
    [34] A. M. Abu-Saman, H. S. El-Zerii, Fuzzy transform algorithm for partial fractional differential equations, J. Math. Comput. Sci., 6 (2016), 235–246.
    [35] S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving fuzzy fractional differential equations by fuzzy Laplace transforms, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005 doi: 10.1016/j.cnsns.2011.07.005
    [36] J. Reunsumrit, M. Sher, K. Shah, N. A. Alreshidi, M. Shutaywi, On fuzzy partial fractional order equations under fuzzified conditions, Fractals, 30 (2022), 2240025. https://doi.org/10.1142/S0218348X22400254 doi: 10.1142/S0218348X22400254
    [37] M. Arfan, K. Shah, A. Ullah, S. Salahshour, A. Ahmadian, M. Ferrara, A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform, Discrete Cont. Dyn. Syst. S, 15 (2022), 315–338. https://doi.org/10.3934/dcdss.2021011 doi: 10.3934/dcdss.2021011
    [38] M. Usman, H. Alrabaiah, H. U. Khan, M. Roman, On applicability of fuzzy natural transform for fuzzy fractional order partial differential problems, Fractals, 2022. https://doi.org/10.1142/SO218348X23400091 doi: 10.1142/SO218348X23400091
    [39] O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003
    [40] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599 https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [41] R. A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355–369. https://doi.org/10.1111/j.1469-1809.1937.tb02153.x doi: 10.1111/j.1469-1809.1937.tb02153.x
    [42] A. M. Zidan, A. Khan, R. Shah, M. K. Alaoui, W. Weera, Evaluation of time-fractional Fisher's equations with the help of analytical methods, AIMS Math., 7 (2022), 18746–18766. https://doi.org/10.3934/math.20221031 doi: 10.3934/math.20221031
    [43] W. Zhang, Convergence of the balanced Euler method for a class of stochastic Volterra integro-differential equations with non-globally Lipschitz continuous cofficients, Appl. Numer. Math., 154 (2020), 17–35. https://doi.org/10.1016/j.apnum.2020.03.010 doi: 10.1016/j.apnum.2020.03.010
    [44] H. Ahmad, A. Akgül, T. A. Khan, P. S. Stanimirovic, Y. M. Chu, New perspective on the conventional solutions of the nonlinear time-fractional partial differential equations, Complexity, 2020 (2020), 1–10. https://doi.org/10.1155/2020/8829017 doi: 10.1155/2020/8829017
    [45] L. Verma, R. Meher, Solution for generalized fuzzy time-fractional Fisher's equation using a robust fuzzy analytical approach, J. Ocean Eng. Sci., 2022. https://doi.org/10.1016/j.joes.2022.03.019 doi: 10.1016/j.joes.2022.03.019
    [46] D. Ludwig, D. G. Aronson, H. F. Weinberger, Spatial patterning of the spruce budworm, J. Math. Biol., 8 (1979), 217–258. https://doi.org/10.1007/BF00276310 doi: 10.1007/BF00276310
    [47] M. O. Vlad, S. E. Szedlacsek, N. Pourmand, L. L. Cavalli-Sforza, P. Oefner, J. Ross, Fisher's theorems for multivariable, time- and space-dependent systems, with applications in population genetics and chemical kinetics, The National Academy of Sciences of the USA, 102 (2005), 9848–9853. https://doi.org/10.1073/pnas.0504073102 doi: 10.1073/pnas.0504073102
    [48] A. J. Ammerman, L. L. Cavalli-Sforza, The Neolithic transition and the genetics of populations in Europe, Princeton: Princeton University Press, 1984. https://doi.org/10.1515/9781400853113
    [49] V. M. Kenkre, Results from variants of the Fisher equation in the study of epidemics and bacteria, Phys. A, 342 (2004), 242–248. https://doi.org/10.1016/j.physa.2004.04.084 doi: 10.1016/j.physa.2004.04.084
    [50] M. Merdan, Solutions of time-fractional reaction-diffusion equation with modified Riemann-Liouville derivative, Int. J. Phys. Sci., 7 (2012), 2317–2326. https://doi.org/10.5897/IJPS12.027 doi: 10.5897/IJPS12.027
    [51] M. J. Ablowitz, A. Zeppetella, Explicit solutions of Fisher's equation for a special wave speed, Bull. Math. Biol., 41 (1979), 835–840. https://doi.org/10.1007/BF02462380 doi: 10.1007/BF02462380
    [52] A. Babakhani, V. Daftardar-Gejji, On calculus of local fractional derivatives, J. Math. Anal. Appl., 270 (2002), 66–79. https://doi.org/10.1016/S0022-247X(02)00048-3 doi: 10.1016/S0022-247X(02)00048-3
    [53] B. Bede, Mathematics of fuzzy sets and fuzzy logic, Berlin, Heidelberg: Springer, 2013. https://doi.org/10.1007/978-3-642-35221-8
    [54] A. Ullah, Z. Ullah, T. AbdelJawad, Z. Hammounch, K. Shah, A hybrid method for solving fuzzy Volterra equations of separable type kernels, J. King Saud Univ. Sci., 33 (2021), 101246. https://doi.org/10.1016/j.jksus.2020.101246 doi: 10.1016/j.jksus.2020.101246
    [55] F. B. M. Belgacem, R. Silambarasan, Theory of natural transform, Math. Eng. Sci. Aerosp., 3 (2012), 99–124.
    [56] A. M. Wazwaz, Linear and nonlinear integral equations, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-21449-3
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1102) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog