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Abstract: Fractional calculus can provide an accurate model of many dynamical systems, which leads
to a set of partial differential equations (PDE). Fisher’s equation is one of these PDEs. This article
focuses on a new method that is used for the analytical solution of Fuzzy nonlinear time fractional
generalized Fisher’s equation (FNLTFGFE) with a source term. While the uncertainty is considered
in the initial condition, the proposed technique supports the process of the solution commencing
from the parametric form (double parametric form) of a fuzzy number. Next, a joint mechanism
of natural transform (NT) coupled with Adomian decomposition method (ADM) is utilized, and the
nonlinear term is calculated through ADM. The obtained solution of the unknown function is written
in infinite series form. It has been observed that the solution obtained is rapid and accurate. The
result proved that this method is more efficient and less time-consuming in comparison with all other
methods. Three examples are presented to show the efficiency of the proposed techniques. The result
shows that uncertainty plays an important role in analytical sense. i.e., as the uncertainty decreases,
the solution approaches a classical solution. Hence, this method makes a very useful contribution
towards the solution of the fuzzy nonlinear time fractional generalized Fisher’s equation. Moreover,
the matlab (2015) software has been used to draw the graphs.
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1. Introduction

It is obvious that fractional calculus (FC) is the generalization of classical calculus that deals
with the operations of differentiation and integration of non-integer (fractional) order. As the
idea of fractional operators has been presented or introduced almost with the development of the
classical ones (classical calculus). Moreover, in this context, fractional dynamics geometry (fractional
geometry) and fractional differential equations (FDE) are only a few of the practical areas for which
the fractional calculus (theory) has been rapidly developed [1]. Fractional calculus has several uses
and has been applied to a variety of fields, including control engineering [2, 3], signal processing [4],
biosciences [5], engineering and mathematics and so on [6–12]. It is crucial to develop analytical and
numerical methods for the solutions of FDEs because most FDEs are difficult to solve precisely. In
this regard, many proposals have been made to propose analytical methods and formulas for the exact
solution of FDEs. Like as, the Adomian decomposition method [13], variational iteration method [14],
the Homotopy perturbation method [15], and additive operating splitting (AOS) method [16], except
these some other numerical methods have also been presented for the solutions of FDEs [17–24].

Moreover, with the passage of time, it has been observed that partial differential equations have
some drawbacks, and one of these limitations or drawbacks is the initial value that appears in a
problem. Because developing accurate (fractional differential equations) in the context of mathematical
modelling is not an easy task, as it requires a comprehension of real physical phenomena, it is a fact that
uncertainty exists in most real-world problems, and determining the initial value is a difficult task due
to the presence of uncertainty. This uncertainty is a moment of concern for scientists and researchers.
Therefore, several researchers have tried and succeeded in proposing some new concepts to deal with
such uncertainty. The fuzzy sets theory [25] is one of the most famous and well-known concepts among
these, which have the ability to handle such things as PDEs having uncertainties. In this regard, the first
contribution to dealing with such PDEs (with uncertainty) can be seen in [26]. Further contributions are
available in [27–33]. The work done by Agarwal et al. [26] has inspired many researchers in the field
of mathematics to set up some new methods, such as explicit solution [30], solution of FFDEs through
fuzzy laplace transform [34, 35], solution of FFDEs via LADM [36], solution of FFDEs via natural
transform and homotopy perturbation method [37] and recently the solution of FFDEs by natural
Adomian decomposition method (NADM) [38]. In addition, FFDEs are further studied in terms of
the Riemann-Liouville H-derivative [39–41]. In general, it is observed that fuzzy fractional partial
differential equations (FFPDEs) are studied due to their wide applications in many research areas, and
in this connection, Ronald Fisher [42] developed a specific type of partial differential equation, the
so-called Fisher equation.

It is our deep interest to solve the time-fractional Fisher’s equation by implementing a new
technique, called natural Adomian decomposition method shortly (NADM). In contrast, the Adomian
decomposition method is a powerful method for solving both linear and nonlinear, homogeneous and
nonhomogeneous partial differential equations, as well as integro-differential equations of integer and
non-integer order, which gives us convergent series with exact/better approximate solutions [29,43,44].
The general response expression contains parameters that describe the order of the fractional derivative
and uncertainties that can be varied to obtain various responses.

The general form of such PDE’s is [45] as
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∂ν(y, t)
∂t

=
∂2ν(y, t)
∂y2 − ν(y, t)(ν(y, t) − 1). (1.1)

In Eq (1.1), the function ν(y, t) shows the “population density”. Whereas, the equation is used to
examine/investigate the spread of faulty gene in a specific area/population. Now according to [45],
mutant gene (means frequency of the mutant gene) for the aforesaid equation (Eq (1.1)) is shown
by ν(y, t), for the provided point y and time t. Due to its importance Fisher equations (FEs) has been
used widely in many fields, like as, ecology, Neolithic-transition, heat and mass-transfer, branching
Brownian motion, epidemic, bacteria, and many others [46,47]. Moreover, the specific solution for the
aforesaid PDEs was first presented by Ablowitz et al. [48]. In addition, for further updated results, we
refer [49–51].

Now considering the time fractional Fisher’s equations (TFFEs) as

∂γν(y, t)
∂tγ

=
∂2ν(y, t)
∂y2 − ν(y, t)(ν(y, t) − 1), t > 0, 0 < γ ≤ 1, (1.2)

with the available initial-condition(s) ν(y, 0) = ψ(y), which is non-linear equation, and by putting γ = 1,
we get the standard Fisher’s equation (1.1).

In fuzzy sense the above Eq (1.2) can be presented as follows:

∂γν̄(y, t)
∂tγ

=
∂2ν̄(y, t)
∂y2 − ν̄(y, t)(ν̄(y, t) − 1), t > 0, 0 < γ ≤ 1, (1.3)

provided fuzzy condition (initial condition) ν̄(0, y) = ψ̄(y), where 0 < γ ≤ 1 shows the non integer
order (fractional order) of the function (fuzzy function) ν̄(y, t).

Since generally, the determination of initial values is very difficult. It always involves uncertainty
quantities in fractional order differential equations dealing with real physical phenomena. To handle
uncertainty quantities, many researchers used several new concepts. The one that stands out among
the concepts is fuzzy set theory. Hence, with the established analysis, we become able to deal
with differential equations of fractional order possessing uncertainties at initial values. On the other
hand using natural decomposition technique is an updated method because natural transform contains
Laplace and Sumudu transform are special cases. Also, using such technique does not need any kind
of discretization or collocation. In addition, the used method is easy to implement and also simple
in compilation. In addition, as local fractional derivative is a generalization of differentiation and
integration of the functions defined on fractal sets. Being local in nature these derivatives have proven
useful in studying fractional differentiability properties of highly irregular and nowhere differentiable
functions. As fractional derivative has numerous definitions including Caputo, Reimann-Liuoville, etc.
These definitions, however, are non-local in nature, which makes them unsuitable for investigating
properties related to local scaling or fractional differentiability (see details [52]).

The paper is organized as follows: In Section 1, the introduction is discussed. In Section 2, we
present some basic definitions and formulas that are employed in this paper. In Section 3, a general
algorithm is developed. Section 4 contains the examples, and in Section 5, a brief conclusion is
presented.
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2. Preliminaries

Here, we’ll talk about several fundamental findings that were employed in this research.

Definition 2.1. [40,53–56] A fuzzy set “ν” is said to be a fuzzy number, if “ν” is (both normalized and
convex, piece-wise continuous, and the closure is compact).

In level wise form the fuzzy number(ν) can be written as

[ν] ȷ =
{
{y ∈ X : ν(y) ≥ ( ȷ)}, i f 1 > ȷ > 0,
cl{y ∈ X : ν(y) > 0}, i f ȷ = 0.

Definition 2.2. [55] A fuzzy number(ν) is represented with three points as ν = (y1, y2, y3) is known as
triangular fuzzy number (TFN).

Mathematically we can write as

ν =


0, a ≤ y1,
a−y1
y2−y1

, y1 ≤ a ≤ y2,
y3−a
y3−y2

, y2 ≤ a ≤ y3,

0, a ≥ y3.

(2.1)

Moreover, in sense of r-cut, the triangular fuzzy number in interval form can be written as

ν = [y1, y2, y3] =
(
(y2 − y1)β + y1, y3 − (y3 − y2)β

)
, 1 ≥ β ≥ 0.

Definition 2.3. [45] A fuzzy number “ν” in double parametric form can be written as

A = ℏ(κ̄ − κ) + κ,

where interval form(r-cut) of κ is, k =[κ
¯

,κ̄], κ
¯

and κ̄ shows the lower bounds and upper bounds and
ℏ ∈ [0, 1].

Definition 2.4. [40] (Operations on fuzzy numbers) Let ν1 = (lν1,u ν1) and ν2 = (lν2,u ν2) be any
two different numbers (fuzzy numbers), and s ∈ R be any scalar (arbitrary scalar), then the various
operations are

(1) Addition: [lν1,u ν1] + [lν2,u ν2] = [lν1 +l ν2,u ν1 +u ν2].
(2) Subtraction: [lν1,u ν1] − [lν2,u ν2] = [lν1 −u ν1,u ν1 − lν2].
(3) Scalar multiplication:

s.ν =
{

(s.lν1, s.uν1), s ≥ 0,
(s.uν1, s.lν1), s < 0.

Definition 2.5. [52] In “Caputo” sense the fractional order derivatives (FOD’s) of order “β > 0” for
the f-function “ν(ζ, t)” over the interval [∅, ∅0] is as

C
∅

Dβ

∅0
ν(y, t) =

1
Γ(ζ − β)

∫ ∅0

∅

(y − ζ)n−β−1νn(ζ, t)dζ, ∅0 > ∅.
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Definition 2.6. [52] Mittage-Leffler function Eβ(t) is defined as follows:

Eβ(t) =
∞∑

n=0

tn

Γ(nβ + 1)
.

Definition 2.7. [54] Natural transform for a fuzzy function ν(y, t) is defined as

R(u, s) = N[ν(y, t)] =
∫ ∞

0
(e)−st ⊙ ν(y, ut)dt, t > 0.

Definition 2.8. [55] Natural transform of the “γ” order derivative of a function is given by as

N
[
D

γ
t ν(y, t)

]
=

sγ

uγ
N(ν(y, t)) −

γ−1∑
i=0

sγ−i−1

uγ−i ν
i(y, 0).

Definition 2.9. [40] The Adomian decomposition method (ADM) for the fuzzy function (FF) “ν(y, t)”
can be shown in infinite series as

ν(y, t) =
∞∑

i=0

νi(y, t). (2.2)

In above Eq (2.2) the components of the function (fuzzy function) “νi, i ≥ 0” can be calculated in a
recursive and a fashionable way. Whereas, the nonlinear term of the functions (fuzzy functions) F (u)
of the aforesaid PDEs can be expressed by an infinite series of the ADM, which is known as Adomian
polynomial An given in the form

F (u) =
∞∑

n=0

An(uo, u1, u2, ...un),

where the Adomian polynomial An for the nonlinear term can be calculated as

An =
1
n!

dn

d⋋n

[
F
( n∑

i=0

⋋iui

)]
⋋=0

, n = 0, 1, 2, 3, ...

3. Mathematical formulation of the model

In this portion, we will establish a mathematical technique in order to get a better knowledge about
Natural transformation coupled with Adomian decomposition method (NADM). Hence, a nonlinear
time fractional PDEs of order γ is considered, i.e.,

D
γ
t ν(y, t) + Rν(y, t) + F ν(y, t) = H(y, t), (3.1)

having initial condition as ν(y, 0) = ψ(y), where Dγ
t ν(y, t), Rν(y, t), F ν(y, t) and H(y, t) represents the

Caputo fractional derivative, linear differential operator, non linear differential operator and the source
term respectively.

Now according to Definition 2.2, the above PDE can be written as

[Dγ
t ν(y, β, t),D

γ
t ν̄(y, β, t)] + [Rν(y, β, t),Rν̄(y, β, t)] + [F ν(y, β, t),F ν̄(y, β, t)] = [H(y, β, t), H̄(y, β, t)].
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Using Definition 2.3 we can write as[
ℏ
(
D

γ
t ν̄(y, β, t) −D

γ
t ν(y, β, t)

)
+D

γ
t ν(y, β, t)

]
+

[
ℏ
(
Rν̄(y, β, t) − Rν(y, β, t)

)
+ Rν(y, β, t)

]
+
[
ℏ
(
F ν̄(y, β, t) + F ν(y, β, t)

)
− F ν(y, β, t)

]
=

[
ℏ
(
H̄(y, β, t) +H(y, β, t)

)
−H(y, β, t)

]
.

It may be noted that β and ℏ are parameters and β, ℏ ∈ [0, 1] is the parametric (double parametric) form
of the partial differential equation means fuzzy partial differential equations. Hence, we can write as[

ℏ
(
D

γ
t ν̄(y, β, t) −D

γ
t ν(y, β, t)

)
+D

γ
t ν(y, β, t)

]
= D

γ
t ν̂(y, ℏ, β, t),[

ℏ
(
Rν̄(y, β, t) − Rν(y, β, t)

)
+ Rν(y, β, t)

]
= Rν̂(y, ℏ, β, t),[

ℏ
(
F ν̄(y, β, t) + F ν(y, β, t)

)
− F ν(y, β, t)

]
= F ν̂(y, ℏ, β, t),[

ℏ
(
H̄(y, β, t) +H(y, β, t)

)
−H(y, β, t)

]
= Ĥ(y, ℏ, β, t).

Equation (3.1) will take the form as

D
γ
t ν̂(y, ℏ, β, t) + Rν̂(y, ℏ, β, t) + F ν̂(y, ℏ, β, t) = Ĥ(y, ℏ, β, t), (3.2)

with associated fuzzy initial condition ν̄(y, 0) = ψ̄(y).
Now applying natural transform to Eq (3.2), we have

N[Dγ
t ν̂(y, ℏ, β, t) + Rν̂(y, ℏ, β, t) + F ν̂(y, ℏ, β, t)] = N[Ĥ(y, ℏ, β, t)]. (3.3)

sγ

uγ
N(ν̂(y, ℏ, β, t)) −

γ−1∑
i=0

sγ−i−1

uγ−i ν̂
i(y, ℏ, β, 0) + N[Rν̂(y, ℏ, β, t)] + N[F ν̂(y, ℏ, β, t)] = N[Ĥ(y, ℏ, β, t)],

N(ν̂(y, ℏ, β, t)) =
1
s
ψ̄(y, ℏ, β) +

uγ

sγ
N[−Rν̂(y, ℏ, β, t) − F ν̂(y, ℏ, β, t)] +

uγ

sγ
N[Ĥ(y, ℏ, β, t)],

N(ν̂(y, ℏ, β, t)) =
1
s
ψ̄(y, ℏ, β) +

uγ

sγ
N[−Rν̂(y, ℏ, β, t) − F ν̂(y, ℏ, β, t)] +

uγ

sγ+1 Ĥ(y, ℏ, β, t).

Now taking the inverse natural transform we get

ν̂(y, ℏ, β, t) = ψ̄(y, β, ℏ) − N−1[
uγ

sγ
N[Rν̂(y, ℏ, β, t) + F ν̂(y, ℏ, β, t)]] +

tγ

Γ(γ + 1)
Ĥ(y, ℏ, β, t).

Now applying the Adomian decomposition method we have
∞∑

i=0

ν̂i(y, ℏ, β, t) = ψ̄(y, ℏ, β) − N−1
[uγ

sγ
N
[ ∞∑

i=0

ν̂i(y, ℏ, β, t) +
∞∑

n=0

An
]]
+

tγ

Γ(γ + 1)
Ĥ(y, ℏ, β, t),

where

An =
1
n!

dn

d⋋n

[
F
( n∑

i=0

⋋iui

)]
⋋=0

, n = 0, 1, 2, 3, ...

After some necessary calculation, the final result can be written in the form as

ν(y, ℏ, r, t) =
∞∑

i=0

ν̂i(y, ℏ, r, t).
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4. Results and discussions

Example 4.1. [45] Let us imagine the nonlinear homogenous fuzzy time fractional Fisher’s equation as

D
γ
t ν̂(y, ℏ, β, t) =

∂2ν̂(y, ℏ, β, t)
∂y2 + 6ν̂(y, ℏ, β, t)[1 − ν̂(y, ℏ, β, t)], γ ∈ (0, 1). (4.1)

Having IC’s as ν̂(y, ℏ, β, 0) = κ̄ 1
(1+ey)2 , where κ = [−1, 0, 1], shows the triangular fuzzy number,

moreover, in r − cut form κ will be as [κ, κ̄] = [β − 1, 1 − β], in sense of double parametric form
we have

κ = ℏ[κ − κ̄] + κ = ℏ(2 − β) + 1 − β, ℏ, r ∈ [0, 1].

Equation (4.1) can be written as

D
γ
t ν̂(y, ℏ, β, t) =

∂2ν̂(y, ℏ, β, t)
∂y2 + 6ν̂(y, ℏ, β, t) − 6ν̂2(y, ℏ, β, t). (4.2)

Taking natural transform of (4.2), we have

N[Dγ
t ν̂(y, ℏ, β, t)] = N

[
∂2ν̂(y, ℏ, β, t)

∂y2 + 6ν̂(y, ℏ, β, t) − 6ν̂2(y, ℏ, β, t)
]
,

sγ

uγ
(ν̂(y, s, ℏ, β, t)) −

γ−1∑
i=0

sγ−i−1

uγ−i ν̂
i(y, s, ℏ, β, 0) = N

[
∂2ν̂(y, ℏ, β, t)

∂y2 + 6ν̂(y, ℏ, β, t) − 6ν̂2(y, ℏ, β, t)
]
,

ν̂(y, s, β, ℏ, t) =
1
s

κ

(1 + ey)2 +
uγ

sγ
N
[
∂2ν̂(y, ℏ, β, t)

∂y2 + 6ν̂(y, ℏ, β, t) − 6ν̂2(y, ℏ, β, t)
]
.

Applying the inverse natural transform, we have

ν̂(y, ℏ, β, t) =
κ

(1 + ey)2 + N−1
[uγ

sγ
N
[∂2ν̂(y, ℏ, β, t)

∂y2 + 6ν̂(y, ℏ, β, t) − 6ν̂2(y, ℏ, β, t)
]]
.

Using Definition 2.9, we have

∞∑
i=0

ν̂i(y, ℏ, β, t) =
κ

(1 + ey)2 + N−1
[uγ

sγ
N
[ ∂2

∂y2

∞∑
i=0

ν̂i(y, ℏ, β, t) + 6
∞∑

i=0

ν̂i(y, ℏ, β, t) − 6
∞∑

n=0

An
]]
,

where

An =
1
n!

dn

d⋋n

[
F
( n∑

i=0

⋋iui

)]
⋋=0

, n = 0, 1, 2, 3, ...

After some calculation and comparing the terms, we have

ν̂0 =
κ

(1 + ey)2 .

ν̂1 =

( 6κ
(1 + ey)2 +

6κe2y

(1 + ey)4 −
2κey

(1 + ey)3 −
6κ2

(1 + ey)4

) tγ

Γ(γ + 1)
.
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ν̂2 =

( 36κ
(1 + ey)2 −

108κ2

(1 + ey)4 +
72κ3

(1 + ey)5 +
24κ2ey

(1 + ey)4 +
114κe2y

(1 + ey)4 −
26κey

(1 + ey)3 −
144κe3y

(1 + ey)5 +
24κ2ey

(1 + ey)5

−
72κ2e2y

(1 + ey)5 +
120κe4y

(1 + ey)6 −
120κ2e2y

(1 + ey)6

) t2γ

Γ(2γ + 1)
.

ν̂3 =

(
−254κey

(1 + ey)2 +
1590κe2y

(1 + ey)4 +
2484κ2ey

(1 + ey)5 −
15612κ2e2y

(1 + ey)6 −
2376κ3ey

(1 + ey)6 +
8304κ3e2y

(1 + ey)7 +
168κ2ey

(1 + ey)4

−
48κ2e2y

(1 + ey)5 +
120κ2e3y

(1 + ey)6 −
4752κe3y

(1 + ey)5 +
7440κe4y

(1 + ey)6 −
4320κe4y

(1 + ey)6 −
720κ2e4y

(1 + ey)7 +
216κ

(1 + ey)2

−
8856κ2

(1 + ey)4 +
432κ3

(1 + ey)5 +
18744κ2e3y

(1 + ey)7 +
9072κ3

(1 + ey)6 −
6048κ4

(1 + ey)7 −
5904κ3ey

(1 + ey)7 −
25365κ2e4y

(1 + ey)8

+
8856κ3e2y

(1 + ey)8 −
6998κ3

(1 + ey)8 −
31104κ6

(1 + ey)10 +
39142κ4e2y

(1 + ey)8 −
151776κ2e6y

(1 + ey)10 −
60480κ4e2y

(1 + ey)10

−
86400κ2e8y

(1 + ey)12 −
1728κ3ey

(1 + ey)7 +
15552κ5

(1 + ey)9 −
42816κ3e3y

(1 + ey)9 −
12384κ4e2y

(1 + ey)9 −
15552κ4ey

(1 + ey)9

+
60192κ3e4y

(1 + ey)10 −
3456κ5ey

(1 + ey)9 +
29952κ4e3y

(1 + ey)10 +
6912κ5ey

(1 + ey)10 −
34560κ4e4y

(1 + ey)11 +
17280κ5ey

(1 + ey)11

−
9216κ3e3y

(1 + ey)8 +
23328κ3e4y

(1 + ey)9 +
3556κ4e3y

(1 + ey)9 −
5760κ3e5y

(1 + ey)9 +
39072κ2e5y

(1 + ey)9 −
20736κ3e5y

(1 + ey)10

+
34560κ2e7y

(1 + ey)11 −
40320κ3e5y

(1 + ey)11 +
5760κ4e3y

(1 + ey)11 +
17280κ3e6y

(1 + ey)11 +
2880κ3e6y

(1 + ey)12

) t3γ

Γ(3γ + 1)
.

In the same way, the other terms can be found, and hence the nth term can be written as

ν̂i(y, ℏ, β, t) = ν̂0 + ν̂1
tγ

Γ(γ + 1)
+ ν̂2

t2γ

Γ(2γ + 1)
+ ν̂3

t3γ

Γ(3γ + 1)
+ ν̂4

t4γ

Γ(4γ + 1)
+ ... + ν̂n

tnγ

Γ(nγ + 1)
,

ν̂i(y, ℏ, β, t) =
∞∑

n=0

ν̂n
(tγ)n

Γ(nγ + 1)
.

Here, we present 3D profile of fuzzy solution of Example 4.1 in Figure 1.
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Figure 1. 3D profile of fuzzy solution of Example 4.1.
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Example 4.2. [45] Let us consider the non-linear homogenous fuzzy time fractional Fisher’s (Burgers
Fisher’s) equation as

D
γ
t ν̂(y, ℏ, β, t) =

∂2ν̂(y, ℏ, β, t)
∂y2 − ν̂(y, ℏ, β, t)

∂ν̂(y, ℏ, β, t)
∂y

− ν̂(y, ℏ, β, t)[ν̂(y, ℏ, β, t)−1], γ ∈ (0, 1), (4.3)

with IC’s as ν̂(y, ℏ, β, 0) = κ̄
(

1
2 +

1
2 tanh( y

4 )
)
, where κ = [−1, 0, 1], shows the triangular fuzzy number,

moreover, in r − cut form κ can be written as [κ
¯
,κ̄]= [β − 1, 1 − β], in sense of double parametric form

this can be written as κ= ℏ[κ
¯
−κ̄]+κ

¯
= ℏ(2 − β) + 1 − β, ℏ, β ∈ [0, 1].

Equation (4.3) can be written as

D
γ
t ν̂(y, ℏ, β, t) =

∂2ν̂(y, ℏ, β, t)
∂y2 − ν̂(y, ℏ, β, t)

∂ν̂(y, ℏ, β, t)
∂y

− ν̂2(y, ℏ, β, t) − ν̂(y, ℏ, β, t).

Following the same procedure, we get

ν̂0 = κ̄
(1
2
+

1
2

tanh(
y
4

)
)
.

ν̂1 =

(
tanh

y
4

sec h2 y
4

(
κ

16
−
κ2

16
) −

κ2

16
sec h2 y

4
−
κ

2
tanh

y
4
−
κ2

4
tanh2 y

4

−
κ2

2
tanh

y
4
−
κ2

4
−
κ

2

) tγ

Γ(γ + 1)
.

ν̂2 =

(
κ

2
+

3
4
κ +

κ3

4
+

(κ
2
+

3
2
κ2 +

3
4
κ3) tanh(

y
4

) + (
3κ2 + 3κ3

4
) tanh2(

y
4

) +
κ3

4
tanh3(

y
4

)

+
(κ2 − 4κ3 − 4κ4

128
)

sec h2(
y
4

) +
(−40κ2 + 4κ − 17κ4

1024
)

sec h4(
y
4

)

+
κ3

1024
sec h6(

y
4

) +
(−16κ − 8κ2 − 10κ3 − 13κ4

128
)

tanh(
y
4

) sec h2(
y
4

)

+
(16κ − 8κ2 − 12κ3 − κ4

512
)

tanh(
y
4

) sec h4(
y
4

) + (
−κ4

512
) tanh(

y
4

) sec h6(
y
4

)

+
(−16κ2 − 7κ3 − 16κ4

128
)

tanh2(
y
4

) sec h2(
y
4

) +
(8κ3 − 7κ4

512
)

tanh2(
y
4

) sec h4(
y
4

)

+(
2κ − 7κ4

128
) tanh3(

y
4

) sec h2(
y
4

) +
(−κ2 − 2κ3 − κ4

512
)

tanh3(
y
4

) sec h4(
y
4

)

+
κ3

128
tanh4(

y
4

) sec h4(
y
4

)
) t2γ

Γ(2γ + 1)
.

In the same way, the other terms can be found, and hence the nth term can be written as

ν̂i(y, ℏ, β, t) = ν̂0 + ν̂1
tγ

Γ(γ + 1)
+ ν̂2

t2γ

Γ(2γ + 1)
+ ν̂3

t3γ

Γ(3γ + 1)
+ ν̂4

t4γ

Γ(4γ + 1)
+ ... + ν̂n

tnγ

Γ(nγ + 1)
.

ν̂i(y, ℏ, β, t) =
∞∑

n=0

ν̂n
(tγ)n

Γ(nγ + 1)
.

We have presented the 3D profile of fuzzy solutions in Figures 2 and 3 respectively.

AIMS Mathematics Volume 8, Issue 7, 16479–16493.



16488

5

4

3

t

2

-0.6

5
4.5

4

-0.4

1

fuzzy Solution

3.5

x

3
2.5

2

-0.2

1.5
1 00.5

0

0

y

0.2

0.4

0.6

0.8

Figure 2. 3D profile of fuzzy solution of Example 4.2 .
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5. Conclusions

A useful technique of the integral transform (natural transform) coupled with the Adomian
decomposition method (ADM) has been presented for the analytical solution of fuzzy nonlinear
time fractional generalized Fisher’s equation using the parametric (double parametric) form of fuzzy
numbers, whereas the analytical results were given in series form. Furthermore, the efficiency of the
proposed technique was checked by assigning different values to the fuzzy parameters “κ” and “ℏ”.
During analysis, it has been observed that as the uncertainty increases, the distance between the
upper and lower solutions increases, i.e., the distance between the solutions is directly proportional
to the increasing of uncertainty, which means that as the uncertainty decreases, the fuzzy solution
converts (approaches) to classical solutions. In an analytical sense, the current techniques are efficient,
reliable, and less time-consuming as compared to the other techniques. And hence the result shows
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that the techniques (proposed techniques) are computationally efficient. Moreover, it is suggested that
the formulation presented is simple and can be extended to other linear and nonlinear fractional order
partial differential equations. It is hoped that the simplicity of this formulation will initiate a new
interest for multiple purposes, like de noising, image processing, image segmentation, etc.
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