Research article

Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints

  • Received: 17 February 2023 Revised: 21 March 2023 Accepted: 23 March 2023 Published: 04 May 2023
  • MSC : 76-11, 76D05

  • Significance 

    The study of non-transient heat transport mechanism in mono nano as well as ternary nanofluids attracts the researchers because of their promising heat transport characteristics. Applications of these fluids spread in industrial and various engineering disciplines more specifically in chemical and applied thermal engineering. Due of huge significance of nanofluids, the study is organized for latest class termed as ternary nanofluids along with induced magnetic field.

    Methodology 

    The model development done via similarity equations and the properties of ternary nanoparticles, resulting in a nonlinear mathematical model. To analyze the physical results with parametric values performed via RKF-45 scheme.

    Study findings 

    The physical results of the model reveal that the velocity $ F{'}\left(\eta \right) $ increased with increasing $ m = 0.1, 0.2, 0.3 $ and $ {\lambda }_{1} = 1.0, 1.2, 1.3 $. However, velocity decreased with increasing $ {\delta }_{1} $. Tangential velocity $ G{'}\left(\eta \right) $ reduces rapidly near the wedge surface and increased with increasing $ {M}_{1} = 1.0, 1.2, 1.3 $. Further, the heat transport in ternary nanofluid was greater than in the hybrid and mono nanofluids. Shear drag and the local thermal gradient increased with increasing $ {\lambda }_{1} $ and these quantities were greatest in the ternary nanofluid.

    Citation: Adnan, Waseem Abbas, Sayed M. Eldin, Mutasem Z. Bani-Fwaz. Numerical investigation of non-transient comparative heat transport mechanism in ternary nanofluid under various physical constraints[J]. AIMS Mathematics, 2023, 8(7): 15932-15949. doi: 10.3934/math.2023813

    Related Papers:

  • Significance 

    The study of non-transient heat transport mechanism in mono nano as well as ternary nanofluids attracts the researchers because of their promising heat transport characteristics. Applications of these fluids spread in industrial and various engineering disciplines more specifically in chemical and applied thermal engineering. Due of huge significance of nanofluids, the study is organized for latest class termed as ternary nanofluids along with induced magnetic field.

    Methodology 

    The model development done via similarity equations and the properties of ternary nanoparticles, resulting in a nonlinear mathematical model. To analyze the physical results with parametric values performed via RKF-45 scheme.

    Study findings 

    The physical results of the model reveal that the velocity $ F{'}\left(\eta \right) $ increased with increasing $ m = 0.1, 0.2, 0.3 $ and $ {\lambda }_{1} = 1.0, 1.2, 1.3 $. However, velocity decreased with increasing $ {\delta }_{1} $. Tangential velocity $ G{'}\left(\eta \right) $ reduces rapidly near the wedge surface and increased with increasing $ {M}_{1} = 1.0, 1.2, 1.3 $. Further, the heat transport in ternary nanofluid was greater than in the hybrid and mono nanofluids. Shear drag and the local thermal gradient increased with increasing $ {\lambda }_{1} $ and these quantities were greatest in the ternary nanofluid.



    加载中


    [1] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S. J. Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-Ethylene Glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 35 (2022), 102046. http://dx.doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [2] Adnan, K. A. M. Alharbi, M. Z. Bani-Fwaz, S. M. Eldin, M. F. Yassen, Numerical heat performance of TiO2/Glycerin under nanoparticles aggregation and nonlinear radiative heat flux in dilating/squeezing channel, Case Stud. Therm. Eng., 41 (2023), 102568. http://dx.doi.org/10.1016/j.csite.2022.102568 doi: 10.1016/j.csite.2022.102568
    [3] R. B. Kudenatti, N. E. Misbah, Hydrodynamic flow of non-Newtonian power-law fluid past a moving wedge or a stretching sheet: A unified computational approach, Sci. Rep., 10 (2020), 9445. http://dx.doi.org/10.1038/s41598-020-66106-6 doi: 10.1038/s41598-020-66106-6
    [4] M. Akç ay, M. A. Yükselen, Flow of power-law fluids over a moving wedge surface with wall mass injection, Arch. Appl. Mech., 81 (2011), 65–76. http://dx.doi.org/10.1007/s00419-009-0393-z doi: 10.1007/s00419-009-0393-z
    [5] K. Jafar, R. Nazar, A. Ishak, I. Pop, MHD boundary layer flow due to a moving wedge in a parallel stream with the induced magnetic field, Bound. Value Probl., 2013 (2013), 20. http://dx.doi.org/10.1186/1687-2770-2013-20 doi: 10.1186/1687-2770-2013-20
    [6] Q. H. Shi, A. Hamid, M. I. Khan, R. N. Kumar, R. J. P. Gowda, B. C. Prasannakumara, et al., Numerical study of bio-convection flow of magneto-cross nanofluid containing gyrotactic microorganisms with activation energy, Sci. Rep., 11 (2021), 16030. http://dx.doi.org/10.1038/s41598-021-95587-2 doi: 10.1038/s41598-021-95587-2
    [7] R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: Analytical solutions, Appl. Math. Model., 37 (2013), 1451–1467. http://dx.doi.org/10.1016/j.apm.2012.04.004 doi: 10.1016/j.apm.2012.04.004
    [8] R. Ellahi, S. M. Sait, N. Shehzad, N. Mobin, Numerical simulation and mathematical modeling of electro-osmotic Couette-Poiseuille flow of MHD power-law nanofluid with entropy generation, Symmetry, 11 (2019), 1038. http://dx.doi.org/10.3390/sym11081038 doi: 10.3390/sym11081038
    [9] M. M. Bhatti, H. F. Ö ztop, R. Ellahi, Study of the magnetized hybrid nanofluid flow through a flat elastic surface with applications in solar energy, Materials, 15 (2022), 7507. http://dx.doi.org/10.3390/ma15217507 doi: 10.3390/ma15217507
    [10] M. M. Bhatti, S. M. Sait, R. Ellahi, Magnetic nanoparticles for drug delivery through tapered stenosed artery with blood based non-Newtonian fluid, Pharmaceuticals, 15 (2022), 1352. http://dx.doi.org/10.3390/ph15111352 doi: 10.3390/ph15111352
    [11] Y. Khan, S. Abdal, S. Hussain, I. Siddique, Numerical simulation for thermal enhancement of H2O+Ethyl Glycol base hybrid nanofluid comprising GO+(Ag, AA7072, MoS2), AIMS Math., 8 (2023), 11221–11237. http://dx.doi.org/10.3934/math.2023568 doi: 10.3934/math.2023568
    [12] N. Abbas, W. Shatanawi, F. Hasan, T. A. M. Shatnawi, Numerical analysis of Darcy resistant Sutterby nanofluid flow with effect of radiation and chemical reaction over stretching cylinder: induced magnetic field, AIMS Math., 8 (2023), 11202–11220. http://dx.doi.org/10.3934/math.2023567 doi: 10.3934/math.2023567
    [13] M. A. S. Murad, F. K. Hamasalh, H. F. Ismael, Numerical study of stagnation point flow of Casson-Carreau fluid over a continuous moving sheet, AIMS Math., 8 (2023), 7005–7020. http://dx.doi.org/10.3934/math.2023353 doi: 10.3934/math.2023353
    [14] K. S. Nisar, M. Shoaib, M. A. Z. Raja, Y. Tariq, A. Rafiq, Design of neural networks for second-order velocity slip of nanofluid flow in the presence of activation energy, AIMS Math., 8 (2023), 6255–6277. http://dx.doi.org/10.3934/math.2023316 doi: 10.3934/math.2023316
    [15] F. Alsharari, M. M. Mousa, New application of MOL-PACT for simulating buoyancy convection of a copper-water nanofluid in a square enclosure containing an insulated obstacle, AIMS Math., 7 (2022), 20292–20312. http://dx.doi.org/10.3934/math.20221111 doi: 10.3934/math.20221111
    [16] Z. Mahmood, U. Khan, Nanoparticles aggregation effects on unsteady stagnation point flow of hydrogen oxide-based nanofluids, Eur. Phys. J. Plus, 137 (2022), 750. http://dx.doi.org/10.1140/epjp/s13360-022-02917-y doi: 10.1140/epjp/s13360-022-02917-y
    [17] K. Guedri, Z. Mahmood, B. M. Fadhl, B. Makhdoum, S. M. Eldin, U. Khan, Mathematical analysis of nonlinear thermal radiation and nanoparticle aggregation on unsteady MHD flow of micropolar nanofluid over shrinking sheet, Heliyon, 9 (2023), e14248. http://dx.doi.org/10.1016/j.heliyon.2023.e14248 doi: 10.1016/j.heliyon.2023.e14248
    [18] A. Alhowaity, M. Bilal, H. Hamam, M. M. Alqarni, K. Mukdasai, A. Ali, Non-Fourier energy transmission in power-law hybrid nanofluid flow over a moving sheet, Sci. Rep., 12 (2022), 10406. http://dx.doi.org/10.1038/s41598-022-14720-x doi: 10.1038/s41598-022-14720-x
    [19] Adnan, W. Abbas, M. Z. Bani-Fwaz, K. K. Asogwa, Thermal efficiency of radiated tetra-hybrid nanofluid[(Al2O3-CuO-TiO2-Ag)/water]tetra under permeability effects over vertically aligned cylinder subject to magnetic field and combined convection, Sci. Progress, 106 (2023), 00368504221149797. http://dx.doi.org/10.1177/00368504221149797
    [20] K. A. M. Alharbi, Adnan, Thermal investigation and physiochemical interaction of H2O and C2H6O2 saturated by Al2O3 and γAl2O3 nanomaterials, J. Appl. Biomater. Func., 20 (2022), 22808000221136483. http://dx.doi.org/10.1177/22808000221136483 doi: 10.1177/22808000221136483
    [21] M. Bilal, A. Ali, H. A. Hejazi, S. R. Mahmuod, Numerical study of an electrically conducting hybrid nanofluid over a linearly extended sheet, J. Appl. Math. Mec., 2022 (2022), e202200227. http://dx.doi.org/10.1002/zamm.202200227 doi: 10.1002/zamm.202200227
    [22] I. Haq, M. Bilal, N. A. Ahammad, M. E. Ghoneim, A. Ali, W. Weera, Mixed convection nanofluid flow with heat source and chemical reaction over an inclined irregular surface, ACS Omega, 7 (2022), 30477–30485. http://dx.doi.org/10.1021/acsomega.2c03919 doi: 10.1021/acsomega.2c03919
    [23] Adnan, M. M. AlBaidani, N. K. Mishra, M. M. Alam, S. M. Eldin, A. A. A. Zahrani, et al., Numerical analysis of magneto-radiated annular fin natural-convective heat transfer performance using advanced ternary nanofluid considering shape factors with heating source, Case Stud. Therm. Eng., 44 (2023), 102825. http://dx.doi.org/10.1016/j.csite.2023.102825 doi: 10.1016/j.csite.2023.102825
    [24] A. M. Alqahtani, M. Bilal, M. Usman, T. R. Alsenani, A. Ali, S. R. Mahmuod, Heat and mass transfer through MHD Darcy Forchheimer Casson hybrid nanofluid flow across an exponential stretching sheet, ZAMM J. Appl. Math. Mec., 2023 (2023), e202200213. http://dx.doi.org/10.1002/zamm.202200213 doi: 10.1002/zamm.202200213
    [25] K. A. M. Alharbi, Adnan, A. M. Galal, Novel magneto-radiative thermal featuring in SWCNT–MWCNT/C2H6O2-H2O under hydrogen bonding, Int. J. Mod. Phys. B, 2023 (2023), 2450017. http://dx.doi.org/10.1142/S0217979224500176 doi: 10.1142/S0217979224500176
    [26] Adnan, W. Ashraf, Numerical thermal featuring in γAl2O3-C2H6O2 nanofluid under the influence of thermal radiation and convective heat condition by inducing novel effects of effective Prandtl number model (EPNM), Adv. Mech. Eng., 14 (2022), 1–11. http://dx.doi.org/10.1177/16878132221106577 doi: 10.1177/16878132221106577
    [27] M. M. Klazly, G. Bognar, Comparison of Sakiadis and Blasius flows using computational fluid dynamic, In: Solutions for sustainable development, Boca Raton: CRC Press, 2019. http://dx.doi.org/10.1201/9780367824037-18
    [28] N. S. Kumar, B. R. Kumar, Blasius and Sakiadis unsteady flow of chemically reacted MHD Williamson fluid with variable conductivity: A comparative study, In: Advances in fluid dynamics, 2021. http://dx.doi.org/10.1007/978-981-15-4308-1_67
    [29] R. L. V. R. Devi, S. V. S. R. Raju, C. S. K. Raju, S. A. Shehzad, F. M. Abbasi, Hydromagnetic Blasius-Sakiadis flows with variable features and nonlinear chemical reaction, Sci. Iran., 28 (2021), 3246–3258. http://dx.doi.org/10.24200/SCI.2021.54288.3681 doi: 10.24200/SCI.2021.54288.3681
    [30] A. Pantokratoras, Blasius and Sakiadis flow with suction and non-linear Rosseland thermal radiation, Int. J. Thermofluids, 10 (2021), 100067. http://dx.doi.org/10.1016/j.ijft.2021.100067 doi: 10.1016/j.ijft.2021.100067
    [31] A. Pantokratoras, Non-similar Blasius and Sakiadis flow of a non-Newtonian Carreau fluid, J. Taiwan Inst. Chem. E., 56 (2015), 1–5. http://dx.doi.org/10.1016/j.jtice.2015.03.021 doi: 10.1016/j.jtice.2015.03.021
    [32] R. C. Bataller, Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition, Appl. Math. Comput., 206 (2008), 832–840. http://dx.doi.org/10.1016/j.amc.2008.10.001 doi: 10.1016/j.amc.2008.10.001
    [33] F. M. Hady, M. R. Eid, M. R. A. Elsalam, M. A. Ahmed, The Blasius and Sakiadis flow in a nanofluid through a porous medium in the presence of thermal radiation under a convective surface boundary condition, IJEIT, 3 (2013), 225–234.
    [34] L. Ali, X. Liu, B. Ali, S. Abdal, R. M. Zulqarnain, Finite element analysis of unsteady MHD Blasius and Sakiadis flow with radiation and thermal convection using Cattaneo-Christov heat flux model, Phys. Scr., 96 (2021), 125219. http://dx.doi.org/10.1088/1402-4896/ac25a3 doi: 10.1088/1402-4896/ac25a3
    [35] C. M. Krishna, G. V. Reddy, B. Souayeh, C. S. K. Raju, M. R. Gorji, S. S. K. Raju, Thermal convection of MHD Blasius and Sakiadis flow with thermal convective conditions and variable properties, Microsyst. Technol., 25 (2019), 3735–3746. http://dx.doi.org/10.1007/s00542-019-04353-y doi: 10.1007/s00542-019-04353-y
    [36] K. R. Sekhar, G. V. Reddy, C. S. K. Raju, Blasius and Sakiadis flow of magnetohydrodynamic Maxwell fluid with exponentially decaying heat source or sink, IJRISE, 2017 (2017), 126–136.
    [37] A. Pantokratoras, T. Fang, A note on the Blasius and Sakiadis flow of a non-Newtonian power-law fluid in a constant transverse magnetic field, Acta Mech., 218 (2011), 187–194. http://dx.doi.org/10.1007/s00707-010-0406-6 doi: 10.1007/s00707-010-0406-6
    [38] F. I. Alao, A. J. Omowaye, A. I. Fagbade, B. Ajayi, Optimal homotopy analysis of Blasius and Sakiadis Newtonian flows over a vertical convective porous surface, JERA, 28 (2017), 102–117. http://dx.doi.org/10.4028/www.scientific.net/JERA.28.102 doi: 10.4028/www.scientific.net/JERA.28.102
    [39] A. O. Oyem, W. N. Mutuku, A. S. Oke, Variability effects on magnetohydrodynamic for Blasius and Sakiadis flows in the presence of Dufour and Soret about a flat plate, Eng. Rep., 2 (2020), e12249. http://dx.doi.org/10.1002/eng2.12249 doi: 10.1002/eng2.12249
    [40] A. Pantokratoras, The Blasius and Sakiadis flow along a Riga-plate, Prog. Comput. Fluid Dy., 11 (2011), 329–333. http://dx.doi.org/10.1504/PCFD.2011.042184 doi: 10.1504/PCFD.2011.042184
    [41] S. Nadeem, S. Ahmad, N. Muhammad, Computational study of Falkner-Skan problem for a static and moving wedge, Sens. Actuators B Chem., 263 (2018), 69–76. http://dx.doi.org/10.1016/j.snb.2018.02.039 doi: 10.1016/j.snb.2018.02.039
    [42] Adnan, Heat transfer inspection in[(ZnO-MWCNTs)/water-EG(50: 50)]hnf with thermal radiation ray and convective condition over a Riga surface, Wave. Random Complex, 2022 (2022), 1–15. http://dx.doi.org/10.1080/17455030.2022.2119300
    [43] Adnan, K. A. M. Alharbi, W. Ashraf, S. M. Eldin, M. F. Yassen, W. Jamshed, Applied heat transfer modeling in conventional hybrid (Al2O3-CuO)/C2H6O2 and modified-hybrid nanofluids (Al2O3-CuO-Fe3O4)/C2H6O2 between slippery channel by using least square method (LSM), AIMS Math., 8 (2023), 4321–4341. http://dx.doi.org/10.3934/math.2023215 doi: 10.3934/math.2023215
    [44] Adnan, A. Waqas, Thermal efficiency in hybrid (Al2O3-CuO/H2O) and ternary hybrid nanofluids (Al2O3-CuO-Cu/H2O) by considering the novel effects of imposed magnetic field and convective heat condition, Wave. Random Complex, 2022 (2022), 1–16. http://dx.doi.org/10.1080/17455030.2022.2092233 doi: 10.1080/17455030.2022.2092233
    [45] Adnan, W. Ashraf, A. H. Alghtani, I. Khan, M. Andualem, Thermal transport in radiative nanofluids by considering the influence of convective heat condition, J. Nanomater., 2022 (2022), 1854381. http://dx.doi.org/10.1155/2022/1854381 doi: 10.1155/2022/1854381
    [46] Adnan, W. Ashraf, I. Khan, M. A. Shemseldin, A. A. A. Mousa, Numerical energy storage efficiency of MWCNTs-propylene glycol by inducing thermal radiations and combined convection effects in the constitutive model, Front. Chem., 10 (2022), 879276. http://dx.doi.org/10.3389/fchem.2022.879276 doi: 10.3389/fchem.2022.879276
    [47] N. Ahmed, Adnan, U. Khan, S. T. Mohyud-Din, I. Khan, R. Murtaza, et al., A novel investigation and hidden effects of MHD and thermal radiations in viscous dissipative nanofluid flow models, Front. Phys., 8 (2020), 75. http://dx.doi.org/10.3389/fphy.2020.00075 doi: 10.3389/fphy.2020.00075
    [48] T. Watanabe, Thermal boundary layers over a wedge with uniform suction or injection in forced flow, Acta Mech., 83 (1990), 119–126. http://dx.doi.org/10.1007/BF01172973 doi: 10.1007/BF01172973
    [49] Adnan, R. Murtaza, I. Hussain, Z. Rehman, I. Khan, M. Andualem, Thermal enhancement in Falkner-Skan flow of the nanofluid by considering molecular diameter and freezing temperature, Sci. Rep., 12 (2022), 9415. http://dx.doi.org/10.1038/s41598-022-13423-7 doi: 10.1038/s41598-022-13423-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1327) PDF downloads(71) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog