This research concerned with a new formulation of a spatial predator-prey model with Leslie-Gower and Holling type II schemes in the presence of prey social behavior. The aim interest here is to distinguish the influence of Leslie-Gower term on the spatiotemporal behavior of the model. Interesting results are obtained as Hopf bifurcation, Turing bifurcation and Turing-Hopf bifurcation. A rigorous mathematical analysis shows that the presence of Leslie-Gower can induce Turing pattern, which shows that this kind of interaction is very important in modeling different natural phenomena. The direction of Turing-Hopf bifurcation is studied with the help of the normal form. The obtained results are tested numerically.
Citation: Fethi Souna, Salih Djilali, Sultan Alyobi, Anwar Zeb, Nadia Gul, Suliman Alsaeed, Kottakkaran Sooppy Nisar. Spatiotemporal dynamics of a diffusive predator-prey system incorporating social behavior[J]. AIMS Mathematics, 2023, 8(7): 15723-15748. doi: 10.3934/math.2023803
This research concerned with a new formulation of a spatial predator-prey model with Leslie-Gower and Holling type II schemes in the presence of prey social behavior. The aim interest here is to distinguish the influence of Leslie-Gower term on the spatiotemporal behavior of the model. Interesting results are obtained as Hopf bifurcation, Turing bifurcation and Turing-Hopf bifurcation. A rigorous mathematical analysis shows that the presence of Leslie-Gower can induce Turing pattern, which shows that this kind of interaction is very important in modeling different natural phenomena. The direction of Turing-Hopf bifurcation is studied with the help of the normal form. The obtained results are tested numerically.
[1] | V. Ajraldi, M. Pittavino, E. Venturino, Modelling herd behaviour in population systems. Nonlinear Anal. Real World Appl., 12 (2011), 2319–2338. https://doi.org/10.1016/j.nonrwa.2011.02.002 |
[2] | P. A. Braza, Predator-prey dynamics with square root functional responses, Nonlinear Anal. Real World Appl., 13 (2012), 1837–1843. https://doi.org/10.1016/j.nonrwa.2011.12.014 doi: 10.1016/j.nonrwa.2011.12.014 |
[3] | I. M. Bulai, E. Venturino, Shape effects on herd behavior in ecological interacting population models, Math. Comput. Simulat., 141 (2017), 40–55. https://doi.org/10.1016/j.matcom.2017.04.009 doi: 10.1016/j.matcom.2017.04.009 |
[4] | I. Boudjema, S. Djilali, Turing-Hopf bifurcation in Gauss-type model with cross diffusion and its application, Nonlinear Stud., 25 (2018), 665–687. |
[5] | S. Djilali, Herd behavior in a predator-prey model with spatial diffusion: bifurcation analysis and Turing instability, J. Appl. Math. Comput., 58 (2018), 125–149. https://doi.org/10.1007/s12190-017-1137-9 doi: 10.1007/s12190-017-1137-9 |
[6] | S. Djilali, Impact of prey herd shape on the predator-prey interaction, Chaos, Solitons Fract., 120 (2019), 139–148. https://doi.org/10.1016/j.chaos.2019.01.022 doi: 10.1016/j.chaos.2019.01.022 |
[7] | S. Djilali, Effect of herd shape in a diffusive predator-prey model with time delay, J. Appl. Anal. Comput., 9 (2019), 638–654. |
[8] | S. Djilali, S. Bentout, Spatiotemporal patterns in a diffusive predator-prey model with prey social behavior, Acta. Appl. Math., 169 (2020), 125–143. https://doi.org/10.1007/s10440-019-00291-z doi: 10.1007/s10440-019-00291-z |
[9] | S. Djilali, Pattern formation of a diffusive predator-prey model with herd behavior and nonlocal prey competition, Math. Meth. Appl. Sci., 43 (2020), 2233–2250. https://doi.org/10.1002/mma.6036 doi: 10.1002/mma.6036 |
[10] | S. Djilali, Spatiotemporal patterns induced by cross-diffusion in predator-prey model with prey herd shape effect, Int. J. Biomath., 13 (2020), 2050030. https://doi.org/10.1142/S1793524520500308 doi: 10.1142/S1793524520500308 |
[11] | S. Djilali, B. Ghanbari, S. Bentout, A. Mezouaghi, Turing-Hopf bifurcation in a diffusive Mussel-Algae model with time-fractional-order derivative, Chaos, Solitons Fract., 138 (2020) 109954. https://doi.org/10.1016/j.chaos.2020.109954 |
[12] | B. Ghanabri, S. Djilali, Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative, Math. Meth. Appl. Sci., 43 (2020), 1736–1752. https://doi.org/10.1002/mma.5999 doi: 10.1002/mma.5999 |
[13] | B. Ghanabri, S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population, Chaos, Solitons Fract., 138 (2020), 109960. https://doi.org/10.1016/j.chaos.2020.109960 doi: 10.1016/j.chaos.2020.109960 |
[14] | B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos, Solitons Fract., 133 (2020), 109619. https://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619 |
[15] | J. Gine, C. Valls, Nonlinear oscillations in the modified Leslie-Gower model, Nonlinear Anal. Real World Appl., 51 (2020), 103010. https://doi.org/10.1016/j.nonrwa.2019.103010 doi: 10.1016/j.nonrwa.2019.103010 |
[16] | E. F. D. Goufo, S. Kumar, S. B. Mugisha, Similarities in a fifth-order evolution equation with and with no singular kernel, Chaos, Solitons Fract., 130 (2020), 109467. https://doi.org/10.1016/j.chaos.2019.109467 doi: 10.1016/j.chaos.2019.109467 |
[17] | C. S. Holling, The functional response of invertebrate predator to prey density, Mem. Entomol. Soc. Canada, 98 (1966), 5–86. https://doi.org/10.4039/entm9848fv doi: 10.4039/entm9848fv |
[18] | C. A. Ibarra, J. Flores, Dynamics of a Leslie-Gower predator-prey model with Holling type II functional response, Allee effect and a generalist predator, Math. Comput. Simul., 188 (2021), 1–22. https://doi.org/10.1016/j.matcom.2021.03.035 doi: 10.1016/j.matcom.2021.03.035 |
[19] | W. Jiang, Q. An, J. Shi, Formulation of the normal forms of Turing-Hopf bifurcation in reaction-diffusion systems with time delay, J. Differ. Equ., 268 (2020), 6067–6102. https://doi.org/10.1016/j.jde.2019.11.039 doi: 10.1016/j.jde.2019.11.039 |
[20] | W. Jiang, H. Wang, X. Cao, Turing instability and turing-hopf bifurcation in diffusive Schnakenberg systems with gene expression time delay, J. Dyn. Differ. Equ., 31 (2019), 2223–2247. https://doi.org/10.1007/s10884-018-9702-y doi: 10.1007/s10884-018-9702-y |
[21] | S. Kumar, A new analytical modelling for fractional telegraph equation via Laplace transform, Appl. Math. Model., 38 (2014), 3154–3163. https://doi.org/10.1016/j.apm.2013.11.035 doi: 10.1016/j.apm.2013.11.035 |
[22] | S. Kumar, A. Kumar, D. Baleanu, Two analytical methods for time-fractional nonlinear coupled Boussinesq-Burger's equations arise in propagation of shallow water waves, Nonlinear Dyn., 85 (2016), 699–715. https://doi.org/10.1007/s11071-016-2716-2 doi: 10.1007/s11071-016-2716-2 |
[23] | S. Kumar, M. M. Rashidi, New analytical method for gas dynamics equation arising in shock fronts, Comput. Phys. Commun., 185 (2014), 1947–1954. https://doi.org/10.1016/j.cpc.2014.03.025 doi: 10.1016/j.cpc.2014.03.025 |
[24] | S. Kumar, D. Kumar, S. Abbasbandy, M. M. Rashidide, Analytical solution of fractional Navier-Stokes equation by using modified Laplace decomposition method, Ain Shams Eng. J., 5 (2014), 569–574. https://doi.org/10.1016/j.asej.2013.11.004 doi: 10.1016/j.asej.2013.11.004 |
[25] | S. Kumar, S. Ghosh, B. Samet, An analysis for heat equations arises in diffusion process using new Yang-Abdel-Aty-Cattani fractional operator, Math. Meth. Appl. Sci., 43 (2020), 6062–6080. https://doi.org/10.1002/mma.6347 doi: 10.1002/mma.6347 |
[26] | S. Kumar, R. Kumar, R. P. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods, Math. Meth. Appl. Sci., 43 (2020), 5564–5578. https://doi.org/10.1002/mma.6297 doi: 10.1002/mma.6297 |
[27] | Y. Liu, J. Wei, Spatiotemporal dynamics of a modified Leslie-Gower model with weak allee effect, Int. J. Bifurcat. Chaos, 30 (2020), 2050169. https://doi.org/10.1142/S0218127420501692 doi: 10.1142/S0218127420501692 |
[28] | Y. Li, F. Zhang, X. Zhuo, Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type $III$ schemes, Math. Biosci. Eng., 17 (2019), 2003–2015. https://doi.org/10.3934/mbe.2020106 doi: 10.3934/mbe.2020106 |
[29] | C. V. Pao, Dynamics of nonlinear parabolic systems with time delays, J. Math. Anal, Appl., 198 (1996), 751–779. https://doi.org/10.1006/jmaa.1996.0111 doi: 10.1006/jmaa.1996.0111 |
[30] | M. M. Rashidi, A. Hosseini, I. Pop, S. Kumar, N. Freidoonimehr, Comparative numerical study of single and two-phase models of nano-fluid heat transfer in wavy channel, Appl. Math. Mech.-Engl. Ed., 35 (2014), 831–848. https://doi.org/10.1007/s10483-014-1839-9 doi: 10.1007/s10483-014-1839-9 |
[31] | F. Souna, A. Lakmeche, S. Djilali, The effect of the defensive strategy taken by the prey on predator-prey interaction, J. Appl. Math. Comput., 64 (2020), 665–690. https://doi.org/10.1007/s12190-020-01373-0 doi: 10.1007/s12190-020-01373-0 |
[32] | F. Souna, A. Lakmeche, S. Djilali, Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting, Chaos, Solitons Fract., 140 (2020), 110180. https://doi.org/10.1016/j.chaos.2020.110180 doi: 10.1016/j.chaos.2020.110180 |
[33] | F. Souna, S. Djilali, A. Lakmeche, Spatiotemporal behavior in a predator-prey model with herd behavior and cross-diffusion and fear effect, Eur. Phys. J. Plus, 136 (2021), 474. https://doi.org/10.1140/epjp/s13360-021-01489-7 doi: 10.1140/epjp/s13360-021-01489-7 |
[34] | M. E. Taylor, Partial differential equations $III$–Nonlinear equations, Applied Mathematical Science, Springer-Verlag, 1996. |
[35] | S. Wang, Z. Xie, R. Zhong, Y. Wu, Stochastic analysis of a predator-prey model with modified Leslie-Gower and Holling type $II$ schemes, Nonlinear Dyn., 101 (2020), 1245–1262. https://doi.org/10.1007/s11071-020-05803-3 doi: 10.1007/s11071-020-05803-3 |
[36] | D. Xu, M. Liu, X. Xu, Analysis of a stochastic predator-prey system with modified Leslie-Gower and Holling-type $IV$ schemes, Phys. A, 537 (2020), 122761. https://doi.org/10.1016/j.physa.2019.122761 doi: 10.1016/j.physa.2019.122761 |
[37] | C. Xu, S. Yuan, T. Zhang, Global dynamics of a predator-prey model with defence mechanism for prey, Appl. Math. Lett., 62 (2016), 42–48. https://doi.org/10.1016/j.aml.2016.06.013 doi: 10.1016/j.aml.2016.06.013 |