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1. Introduction

The prey predator model (denoted P-P model) is considered one of many powerful tools for
predicting the evolution of species in nature [17, 18, 26]. In recent years, a well-known prey behavior
dented by ‘herd behavior’ or ‘social behavior’ that been successfully modeled and analyzed. When the
prey makes a group defense (which know by prey’s social behavior), the predators cannot reach the
prey located in the center of the herd, so the predator will hunt only the prey located in the frontier of
the herd [31]. Therefore, the interaction happens only on the borders of the group. There are numerous
approaches to determining the number of prey on the outer line of the group. The simplest one is to
consider that the prey makes a group o a square shape, then the number of the prey will be proportional
to the square root of the prey density [33]. For modeling this specific behavior we presume that the
resources make a group with a square shape. Hence, the density of the resources in the frontier of
the group is four times the square root of the number of the resources on the herd frontier. Hence,
inspired by the manner of proposing the classical Holling I interaction functional we can deduce that
the functional response that describes this conduct is F(M,N) = γN

√
M, where γ is the hunting rate,

and M is the density o the resources, N is the density of the consumers. The manner of building this
interaction functional is discussed in details through the paper [1]. Further, by changing the group
structure or shape the density of the resources will be changed accordingly. As epitome if we consider
that the resources make a group with a sphere shape it will influence the number of the resources in the
outer bound where it will be 4

1
3 × 3

2
3 × π

1
3 × M

2
3 . For generalizing the previous results, it is considered

that in [3, 37] that the functional response F can be generalized by the one F2(M,N) = γNMα, where
the parameter 0 < α < 1 indicates the structure of the resources group. In the case of the square or
circle group shape this rate will become α = 1

2 , and in the case of α = 2
3 we got the case of the sphere

of cube group shape, which means that this functional response generalizes all the previous cases of
the prey herd structure. Dealing with the resources that exhibit grouping behavior is not always easy
for the consumers, where the from one herd to another, and from predator to another, handling with
the prey in the outer bound of the group changes and takes different time (different handling time for
the predator to handle with a prey) which is been investigated in the first time by Holling to propose
the Holling II interaction functional [17]. This point of view is applied for modeling the intermingling
between the resources and the consumers in this case through the paper [6], where a new functional
response is obtained F3(M,N) = γNMα

1+γth Mα , which summarizes all the intermingling functions and cases
on interaction. This intermingling function was the subject of an investigation on many occasions
for the purpose of modeling many behaviors in nature we mention a few [10, 13]. In fact, using
the functional response F3 as intermingling function next to the logistic increasing of the prey and
linear mortality of resources (see as an example the paper [6]), we get a Gause-type model [4], which
means that the mathematical investigation is trivial and can be distinguished easily from the paper [4].
Investigating the herd behavior in mathematical models is the subject of the recent activities, we cite
the researches [2, 5, 7–10, 12, 13, 32], and for more reading about different mathematical modeling
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of some natural phenomenon we cite the papers [11, 14, 16, 21–25, 30]. In this research, we will
use a different approach where we will incorporate the Leslie-Gower intermingling functional with
the functional F3(M,N) functional responses. Incorporating Leslie-Gower’s functional response form
with resources social behavior is a recent step and attracts any researchers, we cite for instance the
papers [15, 18, 27, 28, 35, 36], hence, it is the subject of interest in this research.

Modeling the intermingling resource-consumer in the case of resources social depends on the spatial
positioning, so, it is wise to consider a spatiotemporal model [34]. Our purpose in this research is to
study the influence of the Leslie-Gower forme on the evolution of the two species, where we will use a
comparative analysis for achieving this goal. In these regards, we consider the first model that models
the intermingling resource-consumer in the case of the resources social conduct and no Leslie-Gower
form. The investigated model is:

∂
∂τ

M(x, τ) = βM(x, τ)
(
1 − M(x,τ)

L

)
+ δ∆M(x, τ) − γMα(x,τ)N(x,τ)

1+γτh Mα(x,τ) , x ∈ (0, lπ), τ > 0,
∂
∂τ

N(x, τ) = −µN(x, τ) + eγMα(x,τ)N(x,τ)
1+γτh Mα(x,τ) + η∆N(x, τ), x ∈ (0, lπ), τ > 0,

∂
∂n⃗ M(x, τ) = ∂

∂n⃗ N(x, τ) = 0, x ∈ (0, lπ), τ > 0,
M(x, 0) = M0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, x ∈ (0, lπ),

(1.1)

with M(x, τ) (resp. N(x, τ)) is the number of the resources (rep. consumer) at t and position x,
βM(x, τ)

(
1 − M(x,τ)

L

)
is the logistic increasing of the resources with increasing rate β and the crying

capacity of the environment L for the resources, µ in the mortality coefficient for the consumer, e is the
conversion rate of the resources into consumer, δ (resp. η) is the diffusion rate for the resources (resp.
consumer). To mention the Neumann boundary conditions highlights that neither the resources or the
consumers cannot move cross the borders. Our main contribution consists to cooperate the Leslie-
Gower with the prey social behavior interaction function and determine its effect on the temporal
behavior of the solutions. The investigated model is given as:

∂
∂τ

M(x, τ) = βM(x, τ)
(
1 − M(x,τ)

L

)
+ δ∆M(x, τ) − γMα(x,τ)N(x,τ)

1+γτh Mα(x,τ) , x ∈ (0, lπ), τ > 0,
∂
∂τ

N(x, τ) = σN(x, τ)
(
1 − N(x,τ)

M(x,τ)

)
+ η∆N(x, τ),

∂
∂n⃗ M(x, τ) = ∂

∂n⃗ N(x, τ) = 0, x ∈ (0, lπ), τ > 0,
M(x, 0) = M0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, x ∈ (0, lπ).

(1.2)

Our purpose is to investigate with the influence of the new approximation provided in (1.2) in modeling
the interaction resources-consumer in the presence of the resources grouping behavior. In fact, we
will use a comparative analysis between the two models (1.1) and (1.2), where we will show that the
system (1.2) have a very rich dynamics. For achieving these aims we use the sections:

In Sec. 2 we analyze (1.1), where it is proved that it can undergo Hopf bifurcation (H-bifurcation),
and cannot have Turing instability (T-instability), which means that it is not possible to have Turing-
Hopf bifurcation (T-H bifurcation). The third section is used to analyze the system (1.2), where we will
show that the system (1.2) undergoes many types of bifurcation as T-bifurcation, H-bifurcation, and T-
H bifurcation. However, the system (1.1) can undergo only Hopf bifurcation (there is no T-bifurcation,
and then there is no T-H bifurcation). The normal form of T-H bifurcation is utilized for study of
steady states solution near the T-H bifurcation. The obtained mathematical results are confirmed using
numerical simulation.
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2. Long time behavior of the model (1.1)

We know that the equilibrium states for the system (1.1) are solutions of the following system βM
(
1 − M

L

)
−

γMαN
1+γτh Mα = 0,

−µN + eγMαN
1+γτh Mα = 0.

(2.1)

Clearly, (2.1) has three equilibria E0(0, 0), E1(L, 0), and the unique positive equilibrium point
E∗(M∗,N∗) where

M∗ =
(

µ

γ(e − µth)

) 1
α

, N∗ =
eβ
µ

(
1 −

M∗
L

)
,

which exists if the following conditions hold

(H1) : e > µth and M∗ < L
(
i.e.γ > γ∗ =

µ

Lα(e − µth)

)
. (2.2)

The linearized system of (1.1) evaluated at (M∗,N∗) is(
∂M
∂τ
∂N
∂τ

)
=

(
D∆ + JE∗(M∗,N∗)

) ( u
v

)
, (2.3)

where D∆ = diag(δ ∂
2

∂x2 , η
∂2

∂x2 ) and

JE∗(M∗,N∗) =

 β
(
1 − 2 M∗

L

)
−
αγ(M∗)α−1N∗

(1+γτh(M∗)α)2 −
γ(M∗)α

1+γτh(M∗)α
eγα(M∗)α−1N∗
(1+γτh(M∗)α)2 0

 . (2.4)

Then the characteristic equation of system (2.3) takes the following form

λ2 − Trkλ + Detk = 0, k ∈ N0, (2.5)

where

Trk = β
(
1 − 2

M∗
L

)
−
αγ(M∗)α−1N∗

(1 + γτh(M∗)α)2 − (δ + η)
(
k
l

)2

, (2.6)

and

Detk = δη

(
k
l

)4

−

(
β
(
1 − 2

M∗
L

)
−
αγ(M∗)α−1N∗

(1 + γτh(M∗)α)2

)
η

(
k
l

)2

+ Det0, (2.7)

with

Det0 =
eαγ2(M∗)2α−1N∗
(1 + γτh(M∗)α)3 > 0.

Using the fact that

β
(
1 −

M∗
L

)
=
αγ(M∗)α−1N∗
1 + γτh(M∗)α

, and 1 + γτh(M∗)α =
eγ
µ

(M∗)α,
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it follows that (2.6) becomes

Trk = β
(
1 − α + α

µτh

e

)
−
β

L

(
2 − α + α

µτh

e

) (
µ

γ(e − µth)

) 1
α

− (δ + η)
(
k
l

)2

, (2.8)

and

Detk = δη

(
k
l

)4

−

β (1 − α + αµτh

e

)
−
β

L

(
2 − α + α

µτh

e

) (
µ

γ(e − µth)

) 1
α

 η (k
l

)2

+ Det0. (2.9)

Putting

LH =

(
2 − α + αµτhe

1 − α + αµτhe

) (
µ

γ(e − µth)

) 1
α

.

Clearly, for k = 0 we have Det0 > 0. Then, if L > LH we have Tr0 < 0 which means that E∗ is locally
stable and if L < LH we get Tr0 < 0, then E∗ is unstable. Now, taking L as the bifurcation parameter.
Thus, we have

Theorem 2.1. Presume that (H1) holds and we put

L = Lk :=

(
2 − α + αµτhe

) (
µ

γ(e−µth)

) 1
α

l2
(
1 − α + αµτhe

)
− (δ + η)k2

. (2.10)

Then, there exists an integer k∗ for which the model (1.1) undergoes a H-bifurcation at E∗ when
L = Lk for 0 ≤ k ≤ k∗. Further, if k = 0 the periodic solution is homogeneous (spatially), and if
k = 1, ..., k∗ the periodic solution is nonhomogeneous (spatially) when k = 1, ..., k∗, where [.] is the
integer part function.

Proof. Denotes

k̄ =

l
√

1 − α + αµτhe

δ + η

 .
Clearly, for an integer k < k̄ we have Lk > 0. We consider that Detk defined by (3.10) is a function of
k. Clearly, Det0 > 0, therefore there exists k̃ > 0 (it can be +∞ if Detk > 0 for all integer k = 0, 1, 2, ...)
a positive integer which represents the first integer that satisfy Detk̃ > 0 and Detk̃+1 ≤ 0. Taking
k∗ = min{k̄, k̃}. In this case, we guarantees that for L = Lk, k = 0, 1, ..., k∗ we have Trk = 0 and
Detk > 0 for all k = 0, 1, ..., k∗ which implies that (3.5) has purely imaginary roots. Letting

λk(L) = θk(L) ± iωk(L), k = 0, 1, ..., k∗

be the solution of Eq (3.5) verifying

θk(Lk) = 0, ωk(Lk) =
√

Detk(Lk).

Then, we get

θ′k(Lk) =
dReλk

dL

∣∣∣∣∣
L=Lk

=

[
l2

(
1 − α + αµτhe

)
− (δ + η)k2

]2

(
2 − α + αµτhe

) (
µ

γ(e−µth)

) 1
α

> 0.

It follows that the transversal condition is justified at each Lk, k = 0, 1, ..., k∗, that is to say that
system (1.1) undergoes H-bifurcation at L = Lk. □
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Now, we focus on proving that the system (1.1) cannot exhibit the existence of Turing instability.
This phenomena is know by the diffusion driven instability, where considering the presence of spatial
diffusion (with distinct diffusion rates) can destabilize a stable equilibrium, which means that if an
equilibrium is stable in the absence of the spatial diffusion can become instable in the presence of the
diffusion (with distinct dispersal rates).

Lemma 2.2. The model (1.1) cannot have T-instability at E∗.

Proof. Before proceeding to prove Lemma 3.6, it is necessary to assume that the conditions that
guarantees the existence and the stability of E∗ in the absence of diffusion holds which consists to
suppose that (H1) holds and L < LH. Immediately, we find that

β
(
1 − 2

M∗
L

)
−
αγ(M∗)α−1N∗

(1 + γτh(M∗)α)2 = β
(
1 − α + α

µτh

e

)
−
β

L

(
2 − α + α

µτh

e

) (
µ

γ(e − µth)

) 1
α

< 0.

Consequently, it follows by Detk > 0, ∀k ∈ N the non occurrence of T-instability. □

3. Long time behavior of the model (1.2)

In this section, we consider the diffusive predator-prey model with Leslie-Gower term (1.2). We
discuss the existence of Hopf bifurcation, after that we derive the condition for Turing pattern which
leads to the occurrence of T-H bifurcation. First of all, we prove that system (1.2) has unique positive
solution

3.1. Existence and boundedness

Here, we investigate the existence and positivity of solution for (1.2).

Theorem 3.1. Assume that β, L, γ, τh, δ and η are all positive, if M0(x, τ) ≥ 0 and N0(x, τ) ≥ 0 for
(x, τ) ∈ [0, lπ] × [0,+∞). Hence, (1.2) has a unique positive solution verifying

0 ≤ M(x, τ) ≤ M∗∗(τ), 0 ≤ N(x, τ) ≤ N∗∗(τ) for (x, τ) ∈ [0, lπ] × [0,+∞],

such that (M∗∗(τ),N∗∗(τ)) is the unique solution of
Mτ = βM

(
1 − M

L

)
,

Nτ = N
(
1 − N

M

)
,

M(0) = M∗∗0 = sup
x∈[0,lπ]

M0(x) , N(0) = N∗∗0 = sup
x∈[0,lπ]

N0(x).
(3.1)

Proof. Putting

f (M,N) = βM
(
1 − M

L

)
−

γMαN
1+γτh Mα , g(M,N) = σN

(
1 − N

M

)
.

Since, fN ≤ 0 and gM ≥ 0 for (M,N) ∈ R2
+ = {(M,N)|M ≥ 0} and from [29] yields that f , g are mixed

quasi-monotone functionals in R. Now, letting

(M̃(x, τ), Ñ(x, τ)) = (0, 0) and (M̂(x, τ), N̂(x, τ)) = (M∗∗(τ),N∗∗(τ)).

AIMS Mathematics Volume 8, Issue 7, 15723–15748.
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From

∂M̂
∂τ
− δ∆M̂ − f (M̂, Ñ) = 0 ≥ 0 =

∂M̃
∂τ
− δ∆M̃ − f (M̃, N̂),

∂N̂
∂τ
− η∆N̂ − f (M̂, N̂) = 0 ≥ 0 =

∂Ñ
∂τ
− η∆Ñ − f (M̃, Ñ)

and 0 ≤ M0(x, τ) ≤ M∗∗0 , 0 ≤ N0(x, τ) ≤> N∗∗0 , for (x, τ) ∈ [0, lπ] × [0,+∞], we can conclude
that (M̃, Ñ) and (M̂, N̂) are the upper and lower solutions of (1.2), respectively. From [29], we get
the existence of a unique globally defined solution (M(x, τ),N(x, τ)) of system (1.2) satisfying 0 ≤
M(x, τ) ≤ M∗∗(τ) and 0 ≤ N(x, τ) ≤ N∗∗(τ).

Applying the strong maximum principle to (1.2), we obtain that M(x, τ) > 0, N(x, τ) > 0 for
(x, τ) ∈ (0, lπ) × (0,+∞). □

Now, we mainly focus on checking the existence of feasible steady states. We can easily verify that
E1 = (L, 0) are always equilibrium for (1.2). Next, we investigate the existence of a positive steady
state of our proposed system (1.2) which is denoted by E2 = (M∗,N∗), then we have the following
theorem

Theorem 3.2. Suppose that all parameters are positive, then the system (1.2) has a unique positive
steady state E2 = (M∗,N∗) with M∗ = N∗ and 0 < M∗ < L (please see Figure 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

 M

 H
(
M

)
−

K
(
M

)

 

 
 α=0.01
 α=0.2
 α=0.5
 α=0.9

 M∗

 M∗

 M∗

 M∗

Figure 1. Influence of prey group shape on E2 for different value of the parameter α. Here
we take L = 1, β = 0.3, γ = 0.1 and τh = 0.2.

Proof. Obviously, E2 is the solution of: βM∗
(
1 − M∗

L

)
−
γM∗αN∗

1+γτh M∗α = 0,
σ

(
1 − N∗

M∗

)
= 0.

(3.2)
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Using the second equation of (3.2), we can notice that M∗ = N∗. Substituting M∗ = N∗ into the first
equation of (3.2), gives h(M∗) = 0, with

h(M) =
γMα

1 + γτhMα
+ β

(M
L
− 1

)
,

and

h′(M) =
αγMα−1

(1 + γτhMα)2 +
β

L
> 0, for M ∈ [0, L].

Obviously, h(0) = −β < 0 and h(L) = γLα

1+γτhLα > 0. Hence, h(M) is an increasing function for M ∈ [0, L],
and bisect the horizontal axis at M∗, where 0 < M∗ < L. The proof of Theorem 3.2 is completed. □

Now, we define the Sobolev space

X =
{
U = (M,N)T ∈ H2(0, lπ) × H2(0, lπ)|∂n⃗M = ∂n⃗N = 0, x = 0, lπ

}
, (3.3)

and its complexification, XC := X ⊕ iX = {x1 + ix2|x1, x1 ∈ X} , with the the inner product ⟨., .⟩ as

< U1,U2 >=

lπ∫
0

(M1M2 + N1N2) dx, Ui = (Mi,Ni)T ∈ XC, i = 1, 2.

The linearization of (1.2) at (M,N) is(
∂M
∂τ
∂N
∂τ

)
= (D∆ + Jk(M,N))

(
M
N

)
, (3.4)

where D∆ = diag(δ ∂
2

∂x2 , η
∂2

∂x2 ) and

Jk(M,N) =

 β
(
1 − 2 M

L

)
−
αγMα−1N

(1+γτh Mα)2 −
γMα

1+γτh Mα

σ
(

N
M

)2
σ

(
1 − 2 N

M

)  . (3.5)

Clearly, the problem

−∆ϕ = µϕ, x ∈ (0, lπ); ϕ′(0) = ϕ′(lπ) = 0,

has the eigenvalues ξk =
(

k
l

)2
(k = 0, 1, 2, ...) where the corresponding normalized eigenfunctions

defining in the Sobolev space X are

ξk(x) =
cos k

l x∥∥∥cos k
l x

∥∥∥ =


√
1
lπ , k = 0,

√
2
lπ cos k

l x, k ≥ 0.

(3.6)

Now, let

U(x, τ) =
+∞∑
k=0

(
ak

bk

)
cos

(
kπ
l

x
)

eλkτ, (3.7)

be the nontrivial solution of the system (3.4) yields the existence of k ∈ N0 such that λ satisfy
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det(λI −Ck − Jk(M,N)) = 0,

where, I is 2 × 2 identity matrix, and Ck = −
(

k
l

)2
diag(δ, η). After a straightforward calculation we

obtain the characteristic equation of (3.4) as

λ2 − Trkλ + Detk = 0, k ∈ N0, (3.8)

where

Trk = β
(
1 − 2

M
L

)
−
αγMα−1N

(1 + γτhMα)2 + σ
(
1 − 2

N
M

)
− (δ + η)

(
k
l

)2

, (3.9)

and

Detk = δη

(
k
l

)4

−

[
ηβ

(
1 − 2

M
L

)
− η

αγMα−1N
(1 + γτhMα)2 + δσ

(
1 − 2

N
M

)] (k
l

)2

(3.10)

+σ

[(
β
(
1 − 2

M
L

)
−
αγMα−1N

(1 + γτhMα)2

) (
1 − 2

N
M

)
+

γMα

1 + γτhMα

( N
M

)2]
.

For the semi trivial steady state E1 we obtain Trk|E1 = −β + σ − (δ + η)
(

k
l

)2
, for k ≥ 0,

Detk|E1 = δη
(

k
l

)4
− (σδ − ηβ)

(
k
l

)2
− σβ, for k ≥ 0.

(3.11)

Obviously, we have Det0|E1 = −σβ < 0 in the absence of the spatial diffusion, which means that E1 is
always unstable.

Now, let’s concentrate on analyzing the stability and the bifurcation properties of E2. From
Theorem 3.2, (1.2) has a unique equilibrium denoted by E2 = (M∗,N∗) where, M∗ = N∗ and
0 < M∗ < L. Submitting (M∗,N∗) into (3.9) and (3.10) and using the fact that

βM∗
(
1 −

M∗

L

)
=

γ(M∗)α

1 + γτh(M∗)α
and 1 + γτh(M∗)α =

γ(M∗)α

β
(
1 − M∗

L

) , (3.12)

then, we obtain  Trk(σ) = σ0 − σ − (δ + η)
(

k
l

)2
, for k ≥ 0,

Detk(σ) = δη
(

k
l

)4
− (ησ0 − σδ)

(
k
l

)2
+ σC∗, for k ≥ 0,

(3.13)

where

C∗ =
αβ2

γM∗

(
1 −

M∗

L

)2

+
1
2
βM∗ > 0, (3.14)

and

σ0 = β

(
1 − 2

M∗

L

)
−
αβ2

γ(M∗)α

(
1 −

M∗

L

)2

. (3.15)

Now, putting

β∗ =
γ
(
1 − 2 M∗

L

)
(M∗)α

α
(
1 − M∗

L

)2 . (3.16)
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Remark 3.3. If L
2 < M∗ < L, i.e. β∗ < 0, we obtain that Trk(σ) < 0 and Detk(σ) > 0, so E2 is always

locally asymptotically stable (with or without diffusion). Thus, there is no Hopf bifurcation.

Now, assume that the following condition holds

(H2) : 0 < M∗ <
L
2

and 0 < β < β∗.

So, we have the following theorem

Theorem 3.4. If η = δ = 0, then:

(i) The positive steady state E2 of system (1.2) is locally asymptotically stable if σ > σ0 and unstable
if σ < σ0 (see Figure 2).

(ii) The local system of the diffusion system (1.2) undergoes Hopf bifurcation for σ = σ0, where σ0

is defined in (3.15) (please see Figure 3).

Proof. Under the condition (H2) and from (3.13), if k = 0 one can immediately get that E2 is locally
asymptotically stable when σ > σ0 Figure 2 and unstable when σ < σ0. For σ = σ0, Eq (3.8) has
a pair of purely imaginary roots ±i

√
σC∗. Let λ(σ) = υ(σ) ± iω(σ) be the root of (3.8) satisfying

υ(σ0) = 0, ω(σ0) = ±i
√
σC∗. A simple calculate gives following transversality condition:

d
dσ
υ(σ)

∣∣∣∣∣
σ=σ0

= −
1
2
< 0. (3.17)

Therefore, we conclude that the non diffusive system associated with (1.2) undergoes H-bifurcation at
E2 when σ = σ0 (see Figure 3). □
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Figure 2. The behavior of (1.2) in the absence of diffusion for α = 2/3, β = 0.1, L = 10, τh =

0.01, σ = 0.79 > σ0 = 0.76 where, (M∗ = N∗ = 0.873 < L = 10, then, E2 is locally
asymptotically stable. Here (M(0),N(0)) = (0.3, 0.4).

AIMS Mathematics Volume 8, Issue 7, 15723–15748.



15733

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 M

 N

0 200 400 600 800 1000
0

2

4

6

 t

 M
(t

)

0 200 400 600 800 1000
0

0.5

1

1.5

 t

 N
(t

)

Figure 3. The behavior of (1.2) in the absence of diffusion for α = 2/3, β = 0.1, L = 10, τh =

0.01, σ = 0.01 < σC = 0.76 where, (M∗ = N∗ = 0.873 < L = 10, then, E2 loses its stability
and a H-bifurcation occurs. Here (M(0),N(0)) = (0.1, 0.05).

3.2. H-bifurcation

Now, concentrating on studying the occurrence of time-periodic solutions for (1.2) generated by
H-bifurcation. throughout the rest of this paper, we assume that (H2) holds i.e. σ0 > 0 and taking σ as
the bifurcation parameter. Recall that H-bifurcation appears if

Trk = 0, Detk > 0 and
∂

∂σ
λ(σ)

∣∣∣∣∣
σ=σ0

, 0.

Obviously

σ = σk = σ0 − (δ + η)
(
k
l

)2

, k ∈ N0 (3.18)

where

k∗ = max{n ∈ N | Detk(σk) > 0 and σk > 0 for k = 0, 1, ..., n − 1} (3.19)

are the critical points for H-bifurcation. The values of the H-bifurcation are highlighted as follows.

Theorem 3.5.

(i) The diffusive model (1.2) undergoes H-bifurcation at E2 whenσ = σk, for k = 0, 1, ..., k∗−1, where
σk and k∗ are defined in (3.18) and (3.19), respectively (see Figure 4). Further, for k = 0 we get a
homogeneous periodic solution and a non homogeneous periodic solution for k = 1, 2, ..., k∗ − 1.

(ii) The eventual H-bifurcation points (σk)0≤k≤k∗−1 satisfying the following relationships

σk∗−1 < ... < σk+1 < σk < σk−1 < ... < σ1 < σ0.
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Figure 4. Left: the relation between Re(λ) and k/l, where for the yellow curve T-instability
does not exist, and for the other curves T-instability exists. Right: plot of Detk with respect
to k/l with the parameter values β = 0.3, L = 1, γ = 0.5, α = 2/3, τh = 0.1 and different
value of σ. curve(1): σ1 = 0.0.21; curve(2): σ2 = 0.0.27; curve(3): σ3 = 0.0.32; curve(4):
σ4 = 0.0.36; curve(5): σ5 = 0.0.41; curve(6): σ6 = 0.0.46.

Proof.

(i) From the definition of the integer k∗, we can easily affirm that when σ = σk, Trk(σk) = 0 and
Detk(σk) > 0 for k = 0, 1, ..., k∗ − 1, which follows purely imaginary roots of Eq (3.8). Letting

λk(σ) = Ak(σ) ± iBk(σ), k = 0, 1, ..., k∗ − 1

be the roots of Eq (3.8) which verifies

Ak(σk) = 0, Bk =
√

Detk(σk).

It follows that if σ is in the neighborhood σk, the solutions of the characteristic equation (3.8)
take the following form

Ak(σ) ± iBk(σ) =
Trk(σ) ±

√
Tr2

k (σ) − 4Detk(σ)

2
with

Ak(σ) =
Trk(σ)

2
, Bk(σ) =

√
Detk(σ) −

Tr2
k (σ)
4

and we have
A′(σk) = −

1
2
< 0.

This yields to the verification of the transversality condition for each σk where k = 0, 1, ..., k∗ − 1.
(ii) Now, we are in the position to prove the second affirmation. After a simple calculate we find

σk+1 − σk = −
(1 + 2n)(δ + η)

l2 < 0.

This implies that (σk) is strictly decreasing sequence for all k = 0, 1, ..., k∗ − 1. The proof of
Theorem 3.5 is completed.

□
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3.3. T-instability

In the following, we mainly prove that under certain sufficient condition, the system (1.2) may
exhibits T-instability unlike the situation in the system without Leslie-Gower term (please see Sec. 2).
Mentioning that T-instability holds when the equilibrium point is locally stable in the non diffusive
system and becomes unstable in the case of diffusive system (i.e. Detk < 0 for some value of integer
k). Notice that E2 is locally stable if the condition (H2) is satisfied and σ > σ0. In this case we have

Tr0(σ) < 0, and Det0(σ) > 0.

In order to study the occurrence of the Turing instability, we define the functional Θ as

Θ

((
k
l

))
:= Detk(σ) = δη

(k
l

)22

− (ησ0 − σδ)
(
k
l

)2

+ σC∗,

which considered as a quadratic polynomial in
(

k
l

)2
and σ0 is defined in (3.15).

Lemma 3.6. If
η

δ
<
σ

σ0
, (3.20)

the system (1.2) cannot undergo T-instability.

Proof. Clearly, under the condition (3.20) we have Θ
((

k
l

)2
)
> 0 which means that system (1.2) has no

diffusion driven instability. □

In the next, we presume that
(H3) :

η

δ
>
σ

σ0
.

Obviously, ifΘ
((

k
l

)2
)
< 0, then Eq (3.8) has one of the two roots is positive. If F(η, δ) = ησ0−σδ >

0, Θ
((

k
l

))
has a minimum at (

k
l

)2

min
=
ησc − σδ

2ηδ
> 0.

Evaluating Θ at this minimum, we get

min
( k

l )
2
Θ

(k
l

)2 = σC∗ −
(ησ0 − σδ)2

4ηδ
, (3.21)

where C∗ is defined by (3.14). Next we show that under (H3), min
( k

l )
2
Θ

((
k
l

)2
)
< 0 for some values

η/δ > 0, which it known by the condition of T-instability. Defining the ratio ξ = η/δ and

Π(η, δ) = (ησ0 − σδ)2 − 4ηδσC∗ = σ2
0η

2 − 2σ(σ0 + 2C∗)ηδ + σ2δ2.

Then, Π(η, δ) = 0 and F(η, δ) = 0 are equivalent to

σ2
0ξ

2 − 2σ(σ0 + 2C∗)ξ + σ2 = 0, (3.22)
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and
ξ = ξ∗ =

σ

σ0
. (3.23)

Notice that
4σ2(σ0 + 2C∗)2 − 4σ2

0σ
2 = 16σ2C∗(C∗ + σ0) > 0,

which means that Eq (3.22) has two has two positive real roots

ξ1 =
σ(σ0 + 2C∗) + 2σ

√
C∗(C∗ + σ0)

σ2
0

, ξ2 =
σ(σ0 + 2C∗) − 2σ

√
C∗(C∗ + σ0)

σ2
0

. (3.24)

Easily, one can see that 0 < ξ2 < ξ∗ < ξ1 and if η/δ > ξ1, we have min
( k

l )
2
Θ

((
k
l

)2
)
< 0 and F(η, δ) > 0.

Here, the positive equilibrium E2 becomes unstable, which means that T-instability occurs.
Now, defining the set

RT := {(η, δ) : δ > 0, η > 0 and η/δ > ξ1}.

Hence, we get the results

Theorem 3.7. Presume that (H2) holds and σ > σ0 (for having the stability of the positive
equilibrium). Then there exists an unbounded set RT such that for any (η, δ) ∈ RT , the equilibrium
E2 becomes unstable, that is , Turing instability (for illustrations we refer Figure 5).
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Figure 5. Graph represents Bifurcation diagram for T-instability generated by the diffusive
system (1.2) in δ−η plane with the parameter values β = 0.9, L = 10, γ = 0.2, τh = 0.5, α =
2/3, σ = 0.5.

3.4. T-H bifurcation

In this subsection, our aim is to investigate the occurrence of T-H bifurcation. This type of
bifurcation happen if there are two integers k1 and k2 where for k = k1, (1.2) has H-bifurcation
and for k = k2 the system (1.2) undergoes T-bifurcation, this kind of bifurcation is a bi-dimensional
bifurcation which means that we need to choose two bifurcation parameters. Hence, we choose σ and
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δ as bifurcation parameters. Assuming that σ0 > 0, it is well known that Tr0(σ) = 0 and Det0(σ) < 0
are necessary conditions for Hopf bifurcation to occur. From (3.13) and (3.15), Tr0 = 0 is equivalent to

σ = σH(δ) = σ0 = β

(
1 − 2

M∗

L

)
−
αβ2

γ(M∗)α

(
1 −

M∗

L

)2

, (3.25)

which is the line of H-bifurcation in δ − σ plan, where the frequency of the oscillations is

ωH = Im(λ) =
√
σC∗.

Besides, T-instability occurs when η

δ
> ξ1, where ξ is given in (3.24). It follows that the critical

value of the T-bifurcation for the parameter σ is

σ = σT (δ) =
ησ2

0

δ
(
(σ0 + 2C∗) + 2

√
C∗(C∗ + σ0)

) = ησ2
0(√

C∗ +
√

C∗ + σ0

)2 . (3.26)

Now, we prove the existence of intersection point between the H-bifurcation curve σH and T-
instability curve σT in δ − σ plane. Defining the following function

h(x) =
ησ2

0

x
(
(σ0 + 2C∗) + 2

√
C∗(C∗ + σ0)

) , x > 0.

Clearly, h is monotonously decreases with the increasing of x. In addition, we have lim
x→0+

h(x) = +∞.

Therefore, we conclude that the H-bifurcation lineσH cuts the T-bifurcation curveσT at (δT−H, σT−H) =
(δ̂, σ0) where

δ̂ =
ησ0(√

C∗ +
√

C∗ + σ0

)2 . (3.27)

Now, we will examine the transversality condition. Fixing δ, and taking σ as parameter, letting λ(σ)
the roots of (3.8), hence:

d
dσ

Reλ(σ)
∣∣∣∣∣
σH
=

d
dσ

Reλ(σ)
∣∣∣∣∣
σT
= −

1
2
< 0,

then, we get

Theorem 3.8. Presume that the conditions (H2) and (H3) are verified, then:

(i) The H-bifurcation line σH cuts the T-bifurcation curve σT in δ−σ-parameter space at the unique
point (δ̂, σ0), where σ0 and δ̂ are defined in (3.15) and (3.27) (for illustrations we refer Figure 6).

(ii) At (δ, σ) = (δ̂, σ0) the characteristic equation (3.8) has a simple zero root.

In order to illustrate numerically the obtained result in Theorem 3.8, T-bifurcation curve and H-
bifurcation curves are plotted in δ − σ plane (please see Figure 5). we fix the parameters β = 0.9, L =
10, γ = 0.2, τh = 0.5, α = 2/3, σ = 0.5 and η = 1. It follows that M∗ = N∗ = 4.97 < L =
10, σ0 = 0.4478 < σ = 0.5, α∗ = 0.432 < α = 0.667, C∗ = 5.6316 and δ̂ = 0.049. From Figure 6,
we can see that the intersection point (1) divide the δ − σ plan into four regions. In D1, E2 is stable.
D2 represents the T-bifurcation region. D3 is the domain in which the pure H-bifurcation occurs. In
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D4, both T-instability and H-bifurcation occur. In this situation, the diffusive system (1.2) produces a
complex spatiotemporal patterns, where the two instabilities T- bifurcation and H-bifurcation coincide.
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Figure 6. Graph represents the existence of T-H bifurcation point in δ−σ plane near E2 with
the parameter values β = 0.9, L = 10, γ = 0.2, τh = 0.5, α = 2/3, σ = 0.5 and η = 1.

4. Normal forms for T-H bifurcation

Here, we mainly focus on the calculate of the normal form of T-H bifurcation in order to determine
the properties and the spatiotemporal dynamics of (1.2) at E2 = (M∗,N∗) near the T-H bifurcation point
(δ̂, σ0). At first, we set µ = (µ1, µ2) ∈ R2) where µ1 = δ − δ̂, µ2 = σ − σ0. Then, we we apply the
translation M = M − M∗, N = N − N∗ to (1.2) and introduce a new parameter µ = (µ1, µ2) ∈ R2). we
denote M by M and N by N. Therefore, the diffusive system (1.2) becomes

∂
∂τ

M(x, τ) = β(M(x, τ) + M∗)
(
1 − (M(x,τ)+M∗)

L

)
+ (δ̂ + µ1)∆M(x, τ)

−
γ(M(x,τ)+M∗)α(N(x,τ)+M∗)

1+γτh(M(x,τ)+M∗)α , x ∈ (0, lπ), τ > 0,
∂
∂τ

N(x, τ) = (σ0 + µ2)(N(x, τ) + M∗)
(
1 − N(x,τ)+M∗

M(x,τ)+M∗

)
+ η∆N(x, τ), x ∈ (0, lπ), τ > 0,

∂
∂n⃗ M(x, τ) = ∂

∂n⃗ N(x, τ) = 0, x ∈ (0, lπ), τ > 0,
M(x, 0) = M0(x) ≥ 0, N(x, 0) = N0(x) ≥ 0, x ∈ (0, lπ).

(4.1)

For system (4.1) and according to [19], also we get

D(µ) =
(
δ̂ + µ1 0

0 η

)
, L(µ) =

(
σ0 π

(σ0 + µ2) −(σ0 + µ2)

)
, (4.2)

and

F(φ, µ) =

 β(φ1 + M∗)
(
1 − (φ1+M∗)

L

)
−
γ(φ1+M∗)α(φ2+M∗)

1+γτh(φ1+M∗)α − σ0φ1 + a1φ2

(σ0 + µ2)(φ2 + M∗)
(
1 − φ2+M∗

φ1+M∗

)
− (σ0 + µ2)φ1 + (σ0 + µ2)φ2

 , (4.3)

where
π = −

γM∗

1 + γτhM∗
, and φ = (φ1, φ2)T ∈ X.

It follows that

D(0) =
(
δ̂ 0
0 η

)
, D1(µ) =

(
2µ1 0
0 0

)
, L(0) =

(
σ0 π

σ0 −σ0

)
, L1(µ) =

(
0 0

2µ2 −2µ2

)
,
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and

Q(φ, χ) =
(

a11φ1χ1 + a12(φ1χ2 + φ2χ1) + a13φ2χ2

a21φ1χ1 + a22(φ1χ2 + φ2χ1) + a23φ2χ2

)
,

C(φ, χ, ν)=


b11φ1χ1ν1 + b12(φ1χ1ν2 + φ1χ2ν1 + φ2χ1ν1)
+b13(φ1χ2ν2 + φ2χ1ν2 + φ2χ2ν1) + b14φ2χ2ν2

b21φ1χ1ν1 + b22(φ1χ1ν2 + φ1χ2ν1 + φ2χ1ν1)
+b23(φ1χ2ν2 + φ2χ1ν2 + φ2χ2ν1) + b24φ2χ2ν2

 ,
where

χ = (χ1, χ2)T ∈ X, ν = (ν1, ν2)T ∈ X.

The coefficients ai j and bi j are given as

a11 =
α(1 − α)γ(M∗)α−1 +

(
2γ2α2τh + α(1 − α)

)
(M∗)α−2

(1 + γτh(M∗)α)3 , a12 =
−αγ(M∗)α−1

(1 + γτh(M∗)α)2 ,

a21 = −2
σ0

M∗
, a22 = 2

σ0

M∗
, a23 = −2

σ0

M∗
,

b11=
−α(α−1)(α−2)γ(M∗)α−2 (1+γτh(M∗)α)2+6α2γ2τh(α−1)(M∗)α−2 (1+γτh(M∗)α)−6α3γ3τh(M∗)3α−2

(1 + γτh(M∗)α)4 ,

b12 =
α(1 − α)γ(M∗)α−2 (1 + γτh(M∗)α) + 2α2γ2τh(M∗)2α−2

(1 + γτh(M∗)α)3 ,

b21 = 6
σ0

(M∗)2 , b22 = −4
σ0

(M∗)2 , b23 = 2
σ0

(M∗)2 ,

a13 = b13 = b14 = b24 = 0.

Now, we get the corresponding characteristic matrices as

Dk(λ) =
(
λ + δµk − σ0 −π

−σ0 λ + ηµk + σ0

)
, k ∈ N.

Clearly, λ = ±iω with ω =
√

Det0, are eigenvalues of D0(λ), and λ = 0 is a simple eigenvalues
for Dδ̂(λ), while other eigenvalues have negative real parts. From Theorem 3.8 and by using a simple
calculate we can obtain

φ1 =

 1
σ0

δ̂µδ̂+σ0

 , φ2 =

(
1
σ0−iω
−π

)
,

and

χ1 =


δ̂µδ̂+σ0

(1+δ̂)µδ̂
(µδ̂−σ0)(δ̂µδ̂+σ0)

(1+δ̂)µδ̂σ0

 , χ2 =

 −πσ0
−πσ0+(ω+iσ0)2

−π(iω−σ0)
−πσ0+(ω+iσ0)2

 .
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Then, by the procedure developed in [19,20], the normal form restricted on central manifold at T-H
bifurcation singularity is



Ż1 = m1(µ)Z1 + m200Z2
1 + m011Z2Z2

+m300Z3
1 + m111Z1Z2Z2 + h.o.t.,

Ż2 = iωZ2 + n2(µ)Z2 + n110Z1Z2

+n210Z2
1Z2 + n021Z2

2Z2 + h.o.t.,
Ż2 = −iωZ2 + n2(µ)Z2 + n110Z1Z2

+n210Z2
1Z2 + n021Z2Z

2
2 + h.o.t..

(4.4)

where the calculation of m1(µ), m200, m011, m300, m111, n2(µ), n110, n210, n021 are given in “Appendix”.

By using the new parameter transformation Z1 = r, Z2 = ρ cosϑ − iρ sinϑ, then we get

{
ṙ = m1(µ)r + m300r3 + m111rρ2,

ρ̇ = Re(n2(µ))ρ + Re(n210)ρr2 + Re(n021)ρ2.
(4.5)

5. Numerical simulation

Here, we will provide some figure for illustrating the obtained results. In fact we investigate the
following cases:
Figure 7: In this figure we set β = 0.5, L = 15, γ = 1.5, α = 0.7, τh = 1.7, σ = 3.1, δ = 0.02, η = 0.04,
l = 1 and the initial data M(x, 0) = 0.5 + 0.1 cos(3x), N(x, 0) = 0.5 + 0.1 cos(2x). Here, we obtain the
stability of the nonhomogeneous steady state.
Figure 8: In this figure we consider the following values β = 3.1, L = 50, γ = 1.5, α = 0.66,
τh = 0.01, σ = 1.01, δ = 0.01, η = 0.04, l = 1 and the initial data M(x, 0) = 0.5 + 0.1 cos(3x),
N(x, 0) = 0.5 + 0.1 cos(2x). Here, we arrive to the stability of the nonhomogeneous steady state.
Figure 9: In this graphical representation we set β = 1.1, L = 50, γ = 1.5, α = 0.66, τh = 0.01,
σ = 0.51, δ = 0.01, η = 0.04, l = 1 and the data M(x, 0) = 0.5+0.1 cos(3x), N(x, 0) = 0.5+0.1 cos(2x).
We arrive at stability of the nonhomogeneous steady state.
Figure 10: Here we choose the set of values β = 1.1, L = 50, γ = 1.5, α = 0.66, τh = 0.01, σ = 0.1,
δ = 0.01, η = 0.04, l = 1 and the initial data M(x, 0) = 0.5 + 0.1 cos(3x), N(x, 0) = 0.5 + 0.1 cos(2x).
Here, we arrive to stability of nonhomogeneous periodic solutions.
Figure 11: Here we choose the set of values β = 1.51, L = 10, γ = 1.5, α = 0.66, τh = 0.01, σ = 0.051,
δ = 0.01, η = 0.04, l = 1 and the data M(x, 0) = 0.5 + 0.1 cos(3x), N(x, 0) = 0.5 + 0.1 cos(2x). Here,
we arrive to stability of nonhomogeneous periodic solutions.
Figure 12: Here, we choose the set of values values β = 1.51, L = 10, γ = 1.5, α = 0.66, τh = 0.01,
σ = 0.08, δ = 0.09, η = 0.01, l = 1 and the data M(x, 0) = 0.5+0.1 cos(3x), N(x, 0) = 0.5+0.1 cos(2x).
Here, we arrive to stability of nonhomogeneous periodic solutions.
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Figure 7. The stability of the non homogeneous steady state, which is obtained in the case
of T-instability.

Figure 8. The stability of the non homogeneous steady state, which is obtained in the case
of T-instability.
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Figure 9. Non homogeneous distribution of the prey and predators, which is obtained in the
case of T-instability.

Figure 10. Non homogeneous distribution of the prey and predators with periodic patterns,
which is obtained in the can of the existence Hopf bifurcation (see Theorem 3.5).
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Figure 11. Non homogeneous distribution of the prey and predators with periodic patterns,
which is obtained in the can of the existence Hopf bifurcation (see Theorem 3.5).

Figure 12. Non homogeneous distribution of the prey and predators with periodic patterns,
which is obtained in the can of the existence Hopf bifurcation (see Theorem 3.5).
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6. Discussion

In this research, we investigated a spatiotemporal P-P model with Leslie-Gower for modeling the
saturation of the predator increasing in terms of the density of the prey. The reason behind considering
such approximation is to highlight that the evolution of the consumers is affected directly by the
density of the resources. The similarity points between the two models, in the absence of the Leslie-
Gower scheme interaction functional (1.1), and the presence of this last (1.2), as the occurrence of
H-bifurcation in the absence and the presence of diffusion in two studied models. The disagreement
between the two considered models consists of the presence of T-instability for (1.1) and the existence
of this last in the diffusive model (1.2). Our study was focused on distinguishing the influence of this
case of interaction on the value of T-H bifurcation. As it is been highlighted in Figure 4, σ (increasing
rate for predator) generated by considering the Leslie-Gower scheme interaction functional has a big
effect on the existence of T-patterns, and hence it influences the existence of T-H bifurcation. No one
can neglect the role of herd behavior in modeling much natural behavior, and the considered model can
fit many cases in different species as fish population (sardines), gnus and buffalos which intermingle
with the lions, hyenas, which highlights the importance of considering such as approximation.

In fact, there are many scenarios that can behold as the persistence of the two categories with
nonhomogeneous patches as it is been shown in Figures 7 and 8, or in nonhomogeneous and periodic
patters as the Figures 10–12. These scenarios generated by the presence of the Leslie-Gower scheme
functional response (more precisely the T-H bifurcation), which shows the huge importance of
considering such as approximation.
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Appendix

Calculations of m1(µ), m200, m011, m300, m111, n2(µ), n110, n210, n021. Here, we are in the position
to give the expressions of m1(µ), m200, m011, m300, m111, n2(µ), n110, n210, n021. We will put only the
formulas of these parameters. For more details about the method of calculation we refer the authors
to [19, 20].

m1(µ) =
1
2
χ1

(
L1(µ)φ1 − µδ̂D1(µ)φ1

)
,

m200 = m011 = m110 = 0,

n2(µ) =
1
2
χ2 (L1(µ)φ2 − 0D1(µ)φ2) ,

m300 =
1
4
χ1Cφ1φ1φ1 +

1
ω
χ1Re

[
iQφ1φ2χ2

]
Qφ1φ1 + χ1Q

φ1

(
h0

200+
1√
2

h2δ̂
200

).
m111 = χ1Cφ1φ1φ1

+
2
ω
χ1Re

[
iQφ1φ2χ2

]
Qφ1φ1

+ χ1

(
Q
φ1

(
h0

011+
1√
2

hδ̂200

) + Q
φ2hδ̂101

+ Q
φ2hδ̂110

)
,

n210 =
1
2
χ2Cφ1φ1φ2 +

1
2iω
χ2

(
2Qφ1φ1χ1Qφ1φ2 +

(
−Qφ2φ2χ2 + Qφ2φ2

χ2

)
Qφ1φ1

)
+ χ2

(
Q
φ1hδ̂110

+ Qφ2h0
200

)
,

n021 =
1
2
χ2Cφ2φ2φ2

+
1

4iω
χ2

(
2
3

Qφ2φ2
χ2Qφ2φ2 +

(
−2Qφ2φ2χ2 + 4Qφ2φ2

χ2

)
Qφ2φ2

)
+ χ2

(
Qφ2h0

011
+ Qφ2h0

020

)
,

where
h0

200 = −
1
2

L−1(0)Qφ1φ1 +
1

2iω
(
φ2χ2 − φ2χ2

)
Qφ1φ1 ,

h2δ̂
200 = −

1

2
√

2

[
L(0) + diag(−4µδ̂ − 4δ̂µδ̂

]−1
× Qφ1φ1 ,

h0
011 = −L−1(0)Qφ2φ2

+
1
iω

(
φ2χ2 − φ2χ2

)
Qφ2φ2

,
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h0
020 =

1
2

[2iω − L(0)]−1 Qφ2φ2 −
1

2iω

(
φ2χ2 −

1
3
φ2χ2

)
Qφ2φ2 ,

hδ̂200 =
[
iωI −

(
L(0) − diag(−µδ̂ − δ̂µδ̂)

)]−1
× Qφ1φ2 −

1
iω
φ1χ1Qφ1φ2 ,

and
h0

002 = h0
020, hδ̂101 = hδ̂101, h2δ̂

200 = 0.
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