Research article

Bi-Lie n-derivations on triangular rings

  • Received: 10 December 2022 Revised: 23 March 2023 Accepted: 16 April 2023 Published: 26 April 2023
  • MSC : 16W25, 15A78, 47L35

  • The purpose of this article is to prove that every bi-Lie n-derivation of certain triangular rings is the sum of an inner biderivation, an extremal biderivation and an additive central mapping vanishing at $ (n-1)^{th} $-commutators for both components, using the notion of maximal left ring of quotients. As a consequence, we characterize the decomposition structure of bi-Lie n-derivations on upper triangular matrix rings.

    Citation: Xinfeng Liang, Lingling Zhao. Bi-Lie n-derivations on triangular rings[J]. AIMS Mathematics, 2023, 8(7): 15411-15426. doi: 10.3934/math.2023787

    Related Papers:

  • The purpose of this article is to prove that every bi-Lie n-derivation of certain triangular rings is the sum of an inner biderivation, an extremal biderivation and an additive central mapping vanishing at $ (n-1)^{th} $-commutators for both components, using the notion of maximal left ring of quotients. As a consequence, we characterize the decomposition structure of bi-Lie n-derivations on upper triangular matrix rings.



    加载中


    [1] G. Maksa, On the trace of symmetric biderivations, C. R. Math. Rep. Acad. Sci. Canada., 9 (1987), 303–308.
    [2] G. Maksa, A remark on symmetric biadditive functions having nonnegative diagonalization, Glasnik Math., 15 (1980), 279–282.
    [3] Y. Wang, Biderivations of triangular rings, Linear Multilinear Algebra, 64 (2016), 1952–1959. https://doi.org/10.1080/03081087.2015.1127887 doi: 10.1080/03081087.2015.1127887
    [4] N. M. Ghosseiri, On biderivations of upper triangular matrix rings, Linear Algebra Appl., 438 (2013), 250–260. https://doi.org/10.1016/j.laa.2012.07.039 doi: 10.1016/j.laa.2012.07.039
    [5] Y. Wang, On functional identities of degree 2 and centralizing maps in triangular rings, Oper. Matrices, 10 (2016), 485–499. https://doi.org/10.7153/oam-10-28 doi: 10.7153/oam-10-28
    [6] L. Liu, M. Y. Liu, On Jordan biderivations of triangular rings, Oper. Matrices, 15 (2021), 1417–1426. https://doi.org/10.7153/oam-2021-15-88 doi: 10.7153/oam-2021-15-88
    [7] I. N. Herstein, Lie and Jordan structures in simple associative rings, Bull. Amer. Math. Soc., 67 (1961), 517–531. https://doi.org/10.1090/S0002-9904-1961-10666-6 doi: 10.1090/S0002-9904-1961-10666-6
    [8] Y. N. Ding, J. K. Li, Characterizations of Lie n-derivations of unital algebras with nontrivial idempotents, Filomat, 32 (2018), 4731–4754. https://doi.org/10.2298/FIL1813731D doi: 10.2298/FIL1813731D
    [9] D. Benkovič, Generalized Lie n-derivations of triangular algebras, Commun. Algebra, 47 (2019), 5294–5302. https://doi.org/10.1080/00927872.2019.1617875 doi: 10.1080/00927872.2019.1617875
    [10] D. Eremita, Biderivations of triangular rings revisited, Bull. Malays. Math. Soc., 40 (2017), 505–527. https://doi.org/10.1007/s40840-017-0451-6 doi: 10.1007/s40840-017-0451-6
    [11] D. Benkovič, Biderivations of triangular algebras, Linear Algebra Appl., 431 (2009), 1587–1602. https://doi.org/10.1016/j.laa.2009.05.029 doi: 10.1016/j.laa.2009.05.029
    [12] X. F. Liang, D. D. Ren, F. Wei, Lie biderivations of triangular algebras, arXiv: 2002.12498.
    [13] Y. Wang, Functional identities of degree 2 in arbitrary triangular rings, Linear Algebra Appl., 479 (2015), 171–184. https://doi.org/10.1016/j.laa.2015.04.018 doi: 10.1016/j.laa.2015.04.018
    [14] D. D. Ren, X. F. Liang, Jordan biderivations on triangular algebras, Adv. Math. (China), 51 (2022), 299–312.
    [15] D. Eremita, Functional identities of degree 2 in triangular rings, Linear Algebra Appl., 438 (2013), 584–597. https://doi.org/10.1016/j.laa.2012.07.028 doi: 10.1016/j.laa.2012.07.028
    [16] Y. Utumi, On quotient rings, Osaka J. Math., 8 (1956), 1–18.
    [17] D. Eremita, Functional identities of degree 2 in triangular rings revisited, Linear Multilinear Algebra, 63 (2015), 534–553. https://doi.org/10.1080/03081087.2013.877012 doi: 10.1080/03081087.2013.877012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1274) PDF downloads(50) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog