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1. Introduction

Let A be an associative unital ring and let Z(A) be the center of R. A ring A is said to be n-torsion
free if nx = 0 implies x = O for some positive integer n € I and arbitrary x € A. A biadditive mapping
@ AXA — Ais a(Lie) biderivation if it is a (Lie) derivation with respect to both components, that is

o(xz,y) = @(x,y)z + x¢(z,y) and @(x, yz) = @(x, y)z + yp(x, 2),
o([x,z],y) = [e(x,y), 2] + [x, (2, y)] and ¢(x, [y, z]) = [¢(x, y),z] + [y, ¢(x, 2)],

for all x,y,z € A. If the algebra A is noncommutative, then the mapping ¢(x,y) = A[x,y] for all
x,y € A and some A € Z(A) is called an inner biderivation. A biadditive mapping ¢ : AX A — A
is said to be an extremal biderivation if it is of the form ¢(x,y) = [x, [y, a]] for all x,y € A and some
a ¢ Z(A) such that [[A, A, a] = 0. The biderivations play a significant role in the theory of functional
identities of algebras or rings, which was first introduced by Maksa [1, 2]. After that, the structures
of biderivations or Lie biderivations on various algebras or rings were studied by authors, forming a
series of interesting and systematic results, see [3—6]. The kind of problem belongs to the extension of
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Herstein’s Lie-type mapping research program proposed by Herstein in the AMS Hour Talk of 1961,
see [7].

The objective of this paper is to investigate bi-Lie n-derivations on triangular rings 7. For this
purpose, we recall some necessary basic concepts. Assuming that n > 2 is a positive integer, we
introduce a series of multi-variable polynomials in the following way:

Pi(x1) = x1,

Py(x1, x2) = [x1, x2],

Pn(.X1, X2, ,Xn_l,xn) = [Pn_l(XI, X2, ,xn—l)’ Xn],

where the symbol [x, y] is equal to xy —yx for all x,y € A and P, (x|, Xp, -+ , X,_1, X,,) is called (n— 1)"-
commutator.
An additive mapping L : 7~ — 7 is called a Lie n-derivation if

L(P(x1, %0, %1, 5)) = D Py, X, oo LK, =+, X1, %)
k=1

for all xy, x5, -, x,—1,x, € 7. On this basis, we introduce the definition of bi-Lie n-derivation. A
bi-additive mapping ¢ : 7 X7 — 7 is called a bi-Lie n-derivation if it is a Lie n-derivation with
respect to both components, that is,

O(Pp(x1, X2, + , X1, Xp),Y) = Z Po(xp, X2, ,@(Xk, ¥)s -+ 5 X115 X)),
k=1

and @(y, P, (X1, X2, -+ Xy, X)) = Z Po(x1,x0, - 0V, Xk)s -+ 5 X1, X)),
k=1

for all xy, x5, -+, Xx,-1,X,,y € 7. In recent years, many authors have studied the structure of (Lie)
biderivations on triangular rings and their related algebras, see [8—12]. The research related to the
mapping of Lie (Jordan)-type biderivation on triangular algebra can be roughly divided into two
directions. One is to use faithful bimodule structure and elementary methods to research, such as the
biderivation studied by Benkovic [11] and Wang [13] respectively, and the Lie (Jordan) biderivation
studied by the first author and his collaborators [12, 14]; the other is to use the structure of the maximal
left ring of the quotient ring, which is the structure defined by Utumi in 1957 and also called an Utumi
left quotient ring, such that the biderivation on the triangular ring studied by Eremita [10], and the
Jordan biderivation on the triangular ring studied by Liu and his collaborators [6]. Therefore, under the
Herstein’s Lie-type mapping research program, a natural question is proposed: How to characterize the
structural form of bi-Lie n-derivation on a triangular ring? This problem leads us to study the structure
of bi-Lie n-derivations on triangular rings.

Inspired by Eremita [10] and Liu [6], we use the structure of Utumi left quotient ring to study
the decomposition form of bi-Lie n-derivation over triangular rings (see Theorem 3.1) in this article.
Meanwhile, we shall make use of Theorem 3.1 to upper triangular matrix rings, attaining the structures
of bi-Lie n-derivations.
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2. Triangular rings

This part is introduced to define triangular ring. Let 7 be a ring with unity / and idempotents e and
f satisfying a relation e + f = I. A unital ring 7 is called a triangular ring, if e7 f is a faithful right
e7 e-module and also left f7 f-module and f7 e = 0. Therefore, the triangular ring has the following
decomposition form:

T =eTe+eT [+ fTf.

There are many examples of meeting the structural form of the triangular ring, such as upper triangular
matrix rings and nest algebras, see [15]. The center of 7 is

ZT)={a+beeTed® fT flaexf = exfb, YV x € T)}.

In this paper, we will study the decomposition form of bi-Lie n-derivation over triangular rings by
using the structure of quotient rings. Next, we will introduce some necessary knowledge points about
Utumi left quotient rings. Let A be a unital ring. In 1956, the concept of the maximal left ring of
quotients (also called Utumi left ring of quotients) was introduced by Utumi [16], which is recorded as
Q,,(A). Its corresponding center is called the extended centroid of A and recorded as C(A). According
to [15,17], the center C(7") of 7 is

CT)={qg=a+beeQ(T)ed fQ.T)flqgexf = exfq, ¥ x € T)}.

It is easy to verify that the map 7 : C(7 )e — C(7)f is aring isomorphism such that de-exf = exf-71(le)
forall x e 7 and A € C(7").
Let K, L be subsets of Q,,;(7). Set

CK,L)={q € K|lgx =xq, Y x€ L)}.

On behalf of [17, Proposition 2.5], we have C(7") = C(Q.(7), R).

With the help of [3,5, 13,15, 17] and above notations, we have listed many important conclusions
that are needed in the text. Since these conclusions have been proved, we have only listed them without
giving their proofs.

Proposition 2.1. [3,5,13,15,17] Let T be a unital ring. The maximal left ring of quotients @, (T")
satisfies the following properties:

(1) T is a subring of the Utumi left quotient ring Q,;(7") with the same I;

(2) For any dense left ideal U of T and a left T -module homomorphism o : U — T, there exists
q € Q(T) such that o be of the form o(x) = xq for x € U;

(3) Z(T) € C(T). Furthermore, Z(T )e € C(T)e and Z(T)f € C(T)f.

3. Bi-Lie n-derivations

This part is the mainbody of this paper. We mainly use the properties of Utumi left quotient rings to
study the structure of bi-Lie n-derivations on triangular rings. This method is simple and very efficient.
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Remark 3.1. Let T = eT e+ eT f + fT f be a triangular ring. For any x € T and for any integer

n > 2, we have
Pn(x’ €, 9e) = (—1)”_I€Xf al’ld

P.(x,f, -+, f) = exf.
In particular, [x,e] = —exf and [x, f] = exf forn = 2.
Lemma 3.1. Let ¢ : T XT — T be a bi-Lie n-derivation on T, then ¢ has the following properties:

(1) $0,x) = ¢(x,0) =0 forall xe T,
(2) ¢(I,x) € C(T) and ¢p(x,I) € C(T) forall x € T;
(3) eple,e)f = —ed(f,e)f = —edle, /)f = ed(f, f)f.

Proof. (1) Suppose that ¢ is a Lie n-derivation in first component, then for any x € 7,
$(0,%) = §(Po(l, -+, D, x) = > Pyl LU, x), 1, 1) =0,
i=1

Similarly, ¢(x,0) = 0 forall x € 7.
(2) Since ¢ is a Lie n-derivation in first component, it follows

O:¢(O’x):¢(Pn(lay’f"" ,f),X)
=P, (¢, x),y, [+, )+ PuL, ¢, %), f,--- . f)

+ZPn(1’y’f"" ’f’¢(f’x)’f"" ’f)
i=3

=e[¢(, x), y1f

for arbitrary x,y € 7, we get e[¢(], x), y]f = 0.
Let’s prove the conclusion: ¢(I,x) € Z(7) C C(7T) for all x € 7. Since P,(I,y,ezf, f, -, f) =0,
we have

0 :¢(O,X) = ¢(Pn(1’y’er,f,"' ,f),X)
=P, (¢, x),y,ezf, -, )+ Pu(L,¢(y, x),ezf,- -, f)

+Pn(1,y,¢(ezf,x),--- ,f)"‘ZPn(I,y,f,--- ,f,¢(f,x),f,--- ,f)
i=4

=P,(¢(1, x),y,ezf, -+, f)
=elg(l, x), ylezf — ez f[$(I, x), y1f,
and then
e[p(l, x), ylezf — ez fl$(I, x), y]f = 0.
With the help of the relation e[¢(/, x), y]f = 0, we obtain

[¢(1, x),y] = elp(I, x), yle + flp(, x), y1f € Z(T) < C(T)

for all x,y € 7. Since the element y is arbitrary, let y = e in above formula, we have e¢(I, x)f = 0; on
the other hand, taking y = ezf in above formula, we arrive at e¢(I, x)ezf — ezfo(I, x)f € Z(T), and
then ed(1, x)ezf — ezfd(I, x)f = 0, we have ep(I, x)e + fo(l,x)f € Z(T)CC(T ) forall x € T.
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Likewise, we have ¢(x,1) € C(7") forall x € 7.
(3) According to the conclusion (2), we arrive at

ed(1,x)f = 0 = ed(x, D). 3.1)

We assume x = e and substitute the equality e + f = I for I in (3.1), we may write

€¢(€, €)f = —€¢(f, €)f = —€¢(€, f)f (32)

An argument similar to the above equations shows that

ed(f, Nf = —ed(f.e)f = —edle, f)f. (3.3)

Combining (3.2) with (3.3), thus, we conclude that

eple,e)f = —ed(f,e)f = —edle, [)f = ed(f. ). (3.4)

Theorem 3.1. Let T be a (n — 1)"-torsion free triangular ring with a nontrivial idempotent e. Assume
that ¢ : T X T — T is a bi-Lie n-derivation and C(f Qi (T)f, fT f) = C(T)f and either eT C(T )e
or fTC(T)f does not contain nonzero central ideals. Then it has the form ¢ = k + 6 + 7y, where
0 : T XT — T isaninner biderivation, k : T XT — T is an extremal biderivation and vy is a bilinear
central map vanishing at (n — 1)"-commutators.

In order to give a more concise proof, we review an interesting conclusion (see Lemma 3.2) coming
from [11, Remark 4.5.]. On this basis, we transform the bi-Lie n-derivation in Theorem 3.1 into
another simpler bi-Lie n-derivation, see Lemma 3.3. For this purpose, we will prove that the biadditive
mapping k : 7 X7 — 7 defined in Lemma 3.3 is a bi-Lie n-derivation of triangular rings 7 for the
case mgy = e¢(e, e)f appears in Lemma 3.2.

Lemma 3.2. A triangular algebra T = Tri(A, M, B) has a nonzero extremal biderivation if and only
if there exists 0 # my € M such that [A, Almy = 0 = my[B, B].

Lemma 3.3. Let ¢ : T XT — T be a bi-Lie n-derivation on 7. If ¢(e,e) # 0, then ¢ = k + ¥,
where k(x,y) = [x, [y, ¢(e,e)]] is an extremal biderivation and ¥ is a bi-Lie n-derivation satisfying
U(e,e) € C(T).

Proof. Since ¢ is a Lie n-derivation of 7~ for the second component, we arrive at
Ple,exf) = (e, Pulexf, [, . [))
= Pu(¢(e,exf), f,---, ) + ZH:Pn(Mf,f,'“ SJooe, . f. 5 f)
=eg(e,exf)f + (n—1D)(exf ;;(26' 1) —é(e, fexf).

Multiplying by e from left and f from right, and since 7~ is (n — 1)"-torsion free, we get ed(e, flexf =
exfole, f)f forall x € T.
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Replacing element exf with equation exf = P,(e,exf, f,---, f) in bi-Lie n-derivation ¢(e, exf),
we can get

od(e,exf) =¢(e, Py(e,exf, f, -, f))
=P,(¢(e,e),exf, f,- -, f)+ P.le,ple,exf), f,--- . f)

+ ZP,,(e,exf,f,--- o, O oo f)
i=3

=d(e,e)exf —exfd(e, e) + edle,exf)f + (n—2)(exfe(e, f) — ¢(e, flexf)
=¢(e,e)exf —exfo(e,e) + ep(e,exf)f.

It follows from above equation that e¢(e, e)exf = exfo(e,e)f for all x € 7. Therefore, we have

ep(e,e)e + fo(e,e)f € C(T).
Assume that ¢(e, e) # 0 and let us prove the map «(x, y) = [x, [y, #(e, €)]] is an extremal biderivation

of 7. Note that
k(e,e) = [e, [e, ¢(e, e)]]

= [e, [e, eg(e, e)e + edle,e) f + fple, e)f]]
= ed(e,e)f,
then ¢(e, €) — (e, e) = ep(e,e)e + fo(e,e)f € C(T).
In the following part, we prove that the element eg(e, e) f satisfies conditions
edp(e,e)f[b,b’'] =0and [a,d ]lep(e,e)f = 0.

In fact, for any a,a’ € e7 e, we have

¢(Pn(e’a’f"" ,f),Pn(e,a',f,--- ’f))
:Pn(¢(Pn(e7aaf"" ’f)ae)’a”fa"' ’f)+Pn(e7¢(Pn(eaaaf"" 9f)aa,)’fa"' ’f)

3.5
=—a'¢(Pn(e,a,f,--~,f),e)f+e¢(P,,(e,a,f,~~-,f),a’)f ( )
=d'ad(e,e)f —d'¢(a,e)f — aple,d)f + ep(a,a)f.

On the other hand,
¢(Pn(eaa’f"” ’f)’Pn(e’a,’f"” ’f))
:Pn(¢(€’Pn(e»a”f"" ’f))aa’f"" ’f)+Pn(e’¢(a’Pn(eaa/sf"" ’f))’f"" ’f) (3 6)

== a(p(e’Pn(eaa/’fa e 7f))f+ e¢(a’Pn(eaa/’f7 e 7f))f
=ad' (e, e)f — aple,d')f — a'¢p(a,e)f + e¢(a,a)f.

Considering (3.5) and (3.6) together, we get that
[a,a’led(e,e)f = 0.

Through similar calculation process, it can be obtained that
ep(e,e)f[b,b'] = 0.

AIMS Mathematics Volume 8, Issue 7, 15411-15426.



15417

Therefore, according to Lemma 3.2 and [11, Remark 4.4], we obtain that the biadditive mapping
k(x,y) = [x,[y,d(e,e)]] is an extremal biderivation of 7 and also is a biderivation. And then
k(x,y) = [x, [y, ¢(e, e)]] is a Lie biderivation. We know that every Lie derivation is a Lie n-derivation
of triangular rings, so we know that x(x, y) = [x, [y, #(e, e)]] is a bi-Lie n-derivation of triangular rings.
Set ¢ — k = . it is easy to check that ¢ is a bi-Lie n-derivation satisfying ¥ (e, e) € C(7"). The proof of
the lemma is now complete.

Before proceeding further study, let us remake a note on the rationality of this method.

Remark 3.2. Owing to Lemma 3.3, we may always subtract an extremal biderivation k(x,y) =
[x, [y, #(e, e)]] from bi-Lie n-derivation ¢ on T in Theorem 3.1. Therefore, we consider only those
bi-Lie n-derivations y which satisfies ey(e,e)f = 0. Further in view of Lemma 3.1, we see that

eyle,e)f = —ey(f.e)f = —ey(e, f)f = ed(f, ))f = 0.
Lemma 3.4. Lety : T X T — T be a bi-Lie n-derivation on 7. Then y satisfies

(1) Ylexf.y) € eT f;
(2) Y(x,eyf) € eT f

forall x,y € T.
Proof. For any x,y € T,

w(exf,y) = W(Pu(exf, f-+ , ),y)
= Py(Uexf.y), oo )+ Y Paexf, foree fU(Fiy) foee o ) (3.7)
i=2
= 6l//(€)€f,y)f + (I’l - 1)(€Xfl,[/(f, y) - lﬁ(f’ y)exf)

According to above relation (3.7), multiplying e and f on both sides of the above identity
respectively, we find that ey(exf,y)e = 0 = fy(exf,y)f. Hence, we have y(exf,y) € e7 f. Using
similar methods, we can show that ¥/(x,eyf) € eT f.

Lemma 3.5. Let y : T X T — T be a bi-Lie n-derivation on 7. Then y satisfies

(1) Y(exe,eyf) = —y(eyf,exe) = dexeyf;
(2) ylexf, fyf) = —¥(fyf,exf) = dexfyf

forall x,y € T.
Proof. For any x,y € 7, thanks to the equation eyf = P,(eyf, f,--- , f), we have

Y(exe,eyf) = Ylexe, Py(eyf, f, -+, f))
= Pn(‘/’(ex&eyf)’f"” ’f) + ZPn(eyfaf’ ’f’w(exe’f)’f"" ’f) (38)
=2
= ey(exe,eyf)f + (n— 1)(eyfY(exe, ) — Y(exe, leyf).

Multiplying by e from left and f from right, and since 7 is (n — 1)"-torsion free, we obtain
leyf, ev(exe, fe + fy(exe, f)f] =0, (3.9)
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thus we arrive that
Ylexe,eyf) = ey(exe,eyf)f € eT f.
On the other hand, it follows from (3.9) that

lﬂ(exe’ eyf) :lﬂ(exe, Pn(e’ e}’f, f’ T f))
=P,(Y(exe,e),eyf, f, -, ) + Pule,y(exe,eyf), f,--- , f)

+ ZPn(e, eyf, f,-, fr(exe, ), fr--- o f)
i=3

=y(exe,e)eyf —eyfiy(exe,e) + ey(exe,eyf)f.

It is easy to conclude [ey(exe,e)e + fy(exe,e)f,eyf] = 0 and Y(exe,eyf) = ey(exe,eyf)f.
Through similar calculations, we can see Y(eyf,exe) = ey(eyf,exe)f € eT f and [ey(e,exe)e +
fu(e,exe)f,eyf] = 0. Define amap f : €7 — 7 by f(x) = ¥(e,exf) for all x € 7, then by
Eq (3.9), we get that

f(rx) =y(e, Py(ere,exf, f, -, [))
=P,(Y(e,ere),exf, f, -+, f) + Pyere,y(e,exf), f, -, f)

+ Y Puereextf fu o foec ) f e )
i=3

=y(e,ere)exf —exfi(e, ere) + erey(e,exf)f + (n — 2)(erexfi(e, f) — ¥l(e, ferexf)

=erey(e,exf) = ri(x)
for all x € e¢7, r € 7. This implies that { is a left 7-module homomorphism. On account of
conclusion (3) in Proposition 2.1, there exists ¢ € Q,;(7") such that f(x) = xg for all x € ¢7. In
particular, f(e) = eq = 0. This implies that g = fq. Thus, f(x) = xfqf forall x € ¢7. Forany r € f7 f,
we have

f(xr) :lﬁ(e,Pn(e.Xf,frf,f,' o 7f))
:Pn(w(e,exf),frf,f,-~ 7f) + Pn(exf,w(e,frf),f,~~- ’f)

+ZPn(€Xf,frf,f,"' ’f’l/’(eaf),f"" ’f)
i=3

=Y(e,exf)frf +exfyle, fr)f —edle, frexf + (n—2)(exfrfvle, f) —yle, flexfrf)
=y(e,exf)frf =T(xr,
which leads to xfrfqf = xfqfrf for all x € e7". Then we get e7 (frfqf — fqfrf) = 0O for all
r € 7. Using conclusion (3) in Proposition 2.1, we see that frfqf = fqfrf forall r € fT f.
Then fqf € C(fQu(T)f, fT f) and hence fqf € C(7)f. Setting A = 7-'(fgf) and owing to the

conclusion (3) in Proposition 2.1, we have dexf = xfqf for all x € e7. Thus ¥ (e, exf) = dexf for all
x € e7 . Therefore,

0= l//(Pn(eaexe’f"" 7f)’eyf)
= Pn('j/(e’eyf)’exe’fa'” ,f)+P,,(e,z//(exe,eyf),f,"' ’f)
= —exey(e,eyf)f + ey(exe,eyf)f
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for all x,y € 7. It follows from above equation that Y(exe, eyf) = exey(e,eyf)f = dexeyf. Similarly,
there exists u € C(7 )e, such that y(exf,e) = uexf forall x € 7.

Next we will prove that Y(e, exf) = dexf = —y(exf,e) for all x € 7. It is sufficient to prove that
A+ pu=0. Forany x,y,z € 7, we have

‘//(Pn(eze,e’f"" ’f)’Pn(eyevexf’f"" af))
=Pn(¢(Pn(€Z€»€»f,“' ’f)’eye)’exf’f"" ,f)+Pn(€y€,lﬂ(Pn(€Z€,€,f,"' ’f)’exf)’f"" ’f)

+ ZPn(eye, exf, f,--, [yu(Pu(eze,e, fo- - s ) ) foo s f)
i=3

=U(P(eze.e. .- . freyelexf — exfu(Pilezece. f.--- . f).eye)
+ eyey(P,(eze,e, f, -, f),exf)f
+(n—2)(eyexfy(Puleze,e, f,---, ), [) —y(Puleze,e, f,-- -, [), eyexf)

=eyezey(e,exf)f — eyey(eze,exf)f.
(3.10)
On the other hand,

Y(Puleze,e, f,- -+, ), Puleye,exf, f,-+ . f))
=P,(Y(eze, Po(eye,exf, f,--- . ). e, f, -+, ) + Puleze,Y(e, Py(eye,exf, f,---, ), f,--+, f)
= — ey(eze, Pyeye,exf, f,---, )))f + ezey(e, Pu(eye,exf, f,--- , ) f
=exfy(eze, eye) — Y(eze,eye)exf — evew(eze,exf)f + ezeyey(e,exf)f. .
A
Considering (3.10) and (3.11) together, we get that ( :
—leye, ezely(e, exf) = [W(eze, eye), exf] (3.12)

for all x,y,z € 7. Similarly, we obtain

Y(Py(eze,exf, f,---, f), Puleye,e, fy---, f))
=P,(Y(Pu(eze,exf, f,--- . f),eye). e, f,--- ., f)
+ Py(eye, y(Pyeze,exf, f,---, f),e) fo--, f) (3.13)
=—ey(Py(eze,exf, f,---, f),eye) f + eyey(P,(eze,exf, f, -+, ), e)f
=exfy(eze, eye) — Y(eze,eye)exf — ezey(exf,eye)f + eyezew(exf,e)f.
On the other hand,
Y(Py(eze,exf, f,---, f), Pu(eye,e, f,--, f))
=P, (Y(eze, Py(eye, e, f,---, ), exf, f,-- . f)
+ Py(eze,y(exf, Pu(eye,e, o, ), foo, f)

+ ;Pn@ze, exf, f,, [ u(fs Paleyese, oo ) for oo o f) G

=y(eze, Pyleye,e, f,- -, [)lexf — exfy(eze, Py(eye,e, f, -, [))
+ezey(exf, Py(eye,e, fr--- . S
+(n = 2)(ezexfy(f, Pu(eye,e, f,--- . [) —y(f, Pu(eye,e, f,- -, [))ezexf)
=ezeyey(exf,e)f — ezey(exf,eye)f.
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Considering (3.13) and (3.14) together, we get that

—leye, ezely(exf, e) = [Y(eze, eye), —exf]. (3.15)

With the help of the preceding two equations (3.12) and (3.15), we get

leye, ezel(Y(e,exf) + Y(exf,e)) =0, ie., (1+ p)leye,ezelexf =0

for all x,y,z € 7. By [17, Proposition 2.6], we conclude that (1 + w)[e7 e,eT e] = 0. This leads to
[(A+weT C(T)e,eT C(T )e] = 0. Then (A+ w)eT C(7 )e is the central ideal of e7 C(7 )e. Without loss
of generality assume that e7 C(7 )e does not contain nonzero central ideals. Hence u = —A. Further,
we have

0 =yl(eyf, P,(e,exe, [, ,f))
= Pn(w(eyf’e)aexe’f"” ,f)+Pn(e,w(eyf,exe),f,--- ’f)
= —exey(eyf, [)f + ed(eyf, exe)f,

and hence ey(eyf,exe)f = exey(eyf,e)f for all x,y € 7. Therefore, Y(eyf,exe) = —Aexeyf.
Therefore, conclusion (1) is valid. The second conclusion can be obtained by a similar method.

Lemma 3.6. Let y : T X T — T be a bi-Lie n-derivation on T . Then y satisfies

(1) Ylexe, fyf) = edlexe, fyfle + fyexe, fyf)f € C(T);
(2) y(fxf,eye) = ed(fyf,exe)e + fu(fyf,exe)f € C(T)

forall x,y € T.

Proof. For any x,y € T,

0 = y(P,(e,exe, f,-, ), [yf)
= Pn(lp(e,fyf),exe,f,--' ,f)+Pn(&‘p(exe’fyf)’f’”' ’f)
= —exey(e, fyf)f + ep(exe, fy)f.

Thus, ey(exe, fyf)f = exey(e, fyf)f. Using the property that the second component is Lie n-
derivation, we can get

0= W(eapn(e’fyf’f"" 9f))
= Pn(w(e’e)nfyf’f’“' ’f)+Pn(e,'//(e’fyf)’f"" ’f)
=eyle,e)fyf +evle, fyf)f,

which leads to ey(e, fyf)f = —ew(e,e)fyf and hence ey(exe, fyf)f = —exey(e,e)fyf = 0. In view
of Lemma 3.4, we have

lﬂ(exf,f)’f) = w(Pn(exf’fa"' 7f)’fyf)
:Pn(lﬁ(exf,f)’f),f,"' ’f)+ZPn(exf’f"" ,f,’J/(f,f)’f),f, ’f)
=2
= ey(exf, fyNf + (n— Dexfy(f, fyf) —w(f, fyfexf).
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Multiplying by e from left and f from right, since 7 is (n — 1)"-torsion free, we conclude that
lexf,ey(f, fyfe+ fu(f, fyf)f] = 0. Thus, by the same methods, we also have

lﬁ(exf,fyf) =¢’(Pn(€,exf,f,"' ,f),fyf)
:Pn(w(e’fyf)9€xf’f>"' ,f)+Pn(€,lﬂ(€)€f,fyf),f,--- ’f)

+ZPn(e’exf’f’”' ,f,lﬁ(f,f)’f)’fa ’f)
i=3

=y(e, fyflexf —exfule, fyf) + eplexf, fyf)f
+(n = 2)(exfy(f, fyf) =¥ (f, fyfexf)
=Y(e, fyflexf —exfle, fyf) + eplexf, fyf)f.

It is easy to conclude that [ey/(e, fyf)e + fy(e, fyf)f,exf] = 0.
In view of Lemmas 3.4 and 3.5, we firstly apply the properties of Lie n-derivation to the second

component, and then perform Lie n-derivation operations on the first component, we can get

w(Pn(exeae’f"" ’f)’Pn(fyf’ervf"” ’f))
:Pn(l//(Pn(exe,e,f,~~- 7f)’fyf)aezf’f"" af)
+Pn(fyf,lﬂ(Pn(€X€,€,f,"‘ ’f)’ezf)’f"" ’f)

+ Z; Pu(fyfresf foe-o s fr(Puexese, fooo o ) )i foeee o f) G16)

=Y (Py(exe,e, f, -, ), fyflezf —ezf(Py(exe,e, f,---, [), fyf)
—ey(Pylexe, e, f, -, [),ezf)fyf
+(n=2)W(Pulexe,e, f,---, ), Nlezfyf — ezfyf(Pulexe,e, [, -+, f), [))
=ey(exe, ezf)fyf — exey(e, ezf)fyf.

On the other hand, we adjust the order in which the first component and the second component use the
Lie n-derivation property, and we can get that

Y(Py(exe,e, f, -, ), Pu(fyf,ezfs fore )
=P,(Y(exe, P,(fyf.ezf. fo--- . ). e. [+, f)

+ Py(exe, yle, Py(fyfiezf fo- s D foree o )
= —ey(exe, Pi(fyf.ezf, f, - . IS + exedle, Pu(fyfiezf, fo- - s NS
=ezf(exe, fyf)f — eplexe, fyflezf + ey(exe, ezf)fyf

+exeyle, fyfezf — exezfu(e, fyf)f — exey(e,ezf)fyf.

Considering (3.16) and (3.17) together, we get that

(3.17)

leyi(exe, fyfle + fylexe, fyf)f, ezf] = [lexe, ezf]. y(e, fyf)] = 0,

and hence ey(exe, fyf)e + fu(exe, fyf)f € C(T) for all x,y € 7. Similarly, we can conclude that (2)
is true.
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Lemma 3.7. Let y : T X9 — T be a bi-Lie n-derivation on T . Then y satisfies
(1) Y(exe,eye) = T (fy(exe, eye) f) + Alexe, eyel + fi(exe, eye)f, where fyr(exe,eye)f € C(T)f;
(2) W(fxf, fyf) = eb(fxf, fyPe+t(ey(fxf, fye)+T(DIfxf, fyfl, where ey(fxf, fyfle € C(T)e
forall x,y € T.
Proof. For any x,y € 7, by Lemma 3.6 we find that

0 = y(exe, P,(eye, f,---, [))
= P,(Y(exe,eye), f,--- , f) + Pu(eye,y(exe, f), f,--+ , f)
= eY(exe, eye)f,

hence, ey(exe, eye) f = 0. At the same time, we see that

l//(Pn(exe’e’f"" ’f)’Pn(eZe’eyf’f"" ’f))
:Pn(W(Pn(exe’e’f"" ,f),eze),eyf,f,--- ’f)
+Pn(€Z€,¢(Pn(€X€,€,f,"' ’f)’eyf)af"" ’f)

+;Pn(ezeaeyfaf"" ,f,xll(Pn(exe,e,f,-~~ ’f)’f)’f’”' ’f) (318)

=Y(Pu(exe,e, f, -, f),eze)eyf — eyfy(Pulexe,e, f,--- , f), eze)
+ezey(Pylexe,e, fr---, ), eyf)f
+(n—2)(ezeyfy(Py(exe, e, f,---, ), [) —W(Pulexe,e, f,--- , f), flezeyf)
= —ezey(exe,eyf)f + ezexey(e,eyf)f.
On the other hand,

Y(Py(exe,e, f,---, f), Py(eze,eyf, f,---, f))
=P.(Y(exe, Py(eze,eyf, .-, ). e. [, -, f)

+ Py(exe,y(e, Py(eze,eyf, fo---, ). foo . f) (3.19)
= —ey(exe, Pyeze,eyf, f, -+, S + exey(e, Puleze,eyf, f,- -, S
=eyfy(exe, eze) — Y(exe,eze)eyf — ezey(exe,eyf)f + exezey(e,eyf)f.

Taking advantage of (3.18) and (3.19), we arrive at
eY(exe,eze)eyf —eyfy(exe,eze)f = [exe, ezely(e,eyf) and
ey(exe,eze)eyf — 7! (fy(exe,eze)f)eyf = Alexe, ezeleyf.
Making use of the conclusion (3) in Proposition 2.1, we can conclude that ey(exe,eze)e =
' (fy(exe, eze) f) + Aexe, eze].
Since ¢ is a Lie n-derivation for the second component, we find
0= lﬁ(exe,Pn(eye,fzf,ezf,f,- o 9f))
= Pﬂ(¢(exe7eye)7fzf’ezf7f5 tee ’f) + Pn(eyeaw(exeafzf)’ezf’f7' o 7f)
= ezflfzf, fy(exe, eye) fl,

and hence fy(exe,eye)f € C(T)f forall x,y € 7. Similarly, we can prove the other part.
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Lemma 3.8. Let Y : T XT — T be a bi-Lie n-derivation on 7. Then y(exf,eyf) =0 forall x,y € T.
Proof. For any x,y € T,

wexf,eyf) = wlexf, P(eyf,fo-+, f))
= Pyplexf,eyf) oo D)+ D Pulexf fooee s fo(exf, ), foeee o f)
i=2

= ey(exf,eyf)f + (n— (eyfylexf, f) — ylexf, feyf)
=ey(exf,eyf)f € eT f.

Let’s fix element y € 7, we define amap g : €7 — 7 by g,(x) = y(exf, eyf) for all x € ¢7". Then by
Lemma 3.8, we get

gy(rx) =l//(Pn(ere, exf, f, cee ,f),gyf)
:Pn(lﬁ(e”e, eyf)’ €.Xf, f’ tee ,f) + Pn(ere, lﬁ(exf, eyf),f, ce ,f)

+ > Puleresexf, fre S0 foe o)
i=3
=erey(exf,eyf)f = rg,(x)

for all x € 7, r € 7, and hence g, is a left 7-module homomorphism. By conclusions (2) and (3) in
Proposition 2.1, there exists g, € Q,;(7") such that g,(x) = xgq, for all x € e7". Clearly, eq, = g,(e) = 0.
So g, = fq,f implies that g,(x) = xfq,f for all x € e7". And then we also have

gy(-xr) :l//(Pn(e.Xf, f}"f, f, ce ,f)’gyf)
:Pn(l//(exf’eyf),frf’f"" ,f)+Pn(€xf,(ﬁ(frf’eyf)’f,... ’f)

+ ZPn(exf,frf,f,--- ey foo )
i=3

=ey(exf, ey )frf = g0,

and hence xfrfq,f = xfq,frf forall x € eT,r € T. Then eT (frfq,f — fq,frf) =0forallr € 7.
In view of conclusion (3) in Proposition 2.1, we get frfq,f = fq,frf for all r € 7. Consequently, by
the assumption of Theorem 3.1, we have fq,f € C(7)f. Now, for any x,y,x’,y" € 7", by Lemma 3.6,
we have

lp(Pn(ex/f’exe’f"" ,f),Pn(ey’f,eye,f,--- ’f))
:Pn(l//(Pn(ex/f’exe’f"" ’f)’ey,f)’eye’f"" ’f)
+Pn(ey’f’w(Pn(ex,f,exe’f"” ’f)’eye)’f"" ’f)

+;&@%m%m%MMMMmﬂ~ﬁﬁ%mJ) (320,

= —eyey(Py(ex'f,exe, f,--, ), ey Nf

+ey fy(Py(ex'foexe, f,--, f).eye) — Y(Pyex' f,exe, f, -~ , f),eye)ey' f

+(n = 2)Y(Pulex'frexe, f,---, ), Neyey' [ — eyey fy(Py(ex'f,exe, f,- -, f), /)
=eyexey(ex' f,ey f).
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On the other hand,

W(P,(ex f,exe, f,--- , ), Pu(ey f,eve, fr -+, f))
=P,(y(ex'f,P,(ey f,eye, f,---,[f)),exe, f,--,f)
+ Py(ex’ f,(exe, Pu(ey freve, £, ) frree s )

+;Pn(exf,exe,f,--- ’f’w(f’Pn(eyf;eye’f"” ’f)7f"" ’f) (321)

= —exey(ex'f, Pu(ey f.eye, .-, f
+ex' fy(exe, Py(ey feye, fo--, f)) — Y(exe, Py(ey freye, f,--- , [ex' f
+(n=2)Y(f, Pu(ey freye, f,- -, exex' f — exex' fy(f, Pu(ey' f,eye, f, -+, )
=exeyey(ex'f,ey f)f.

Taking advantage of (3.20) and (3.21) together, we get that

0 = [y(ex'f, ey’ [), [exe, eye]]
= [exe, eyelex' fqy, f
=7 '(fqy f)lexe, eyelex f

for all x,y,x,y’ € 7. By conclusion (3) in Proposition 2.1, we have 77'(fg, f)[eT e, eT e] = 0, this
implies that
(= (fqy ))eT C(T)e, eT C(T)e] = 0.

It follows from above equation that 77!( f qy )eT C(T )e is a central ideal of e7 C(7 )e. Assume without
loss of generality that €7 C(7 )e does not contain nonzero central ideals. Then 77!( fqy f) = 0, which
leads to fg,f = 0 forally’ € 7. So we conclude that y(exf, eyf) = exfq,f = 0 for all x,y € 7. This
lemma is proved.

Remark 3.3. Let us define two bilinear mapsy : T XT = C(T)and 6 : T XT — T by

y(x,y) =fy(exe,eye + [y)f + 7 (f(exe,eye + fyf)f)
+ey(fxf,eye+ fyfle + t(ey(fxf,eye + fyf)e),
o(x,y) =¢(x,y) — y(x, ).

Clearly, y(x,y) € C(7T) and y(Pu(xi,x2, ", %), P,(y1,y2,-++,y) = 0 for all
X1, X2, > Xus V1, V2, -+ » ¥ € T . Also, it is easy to verify that ¢ is a bi-Lie n-derivation.
On the basis of Remark 3.3 and Lemmas 3.1-3.8, it follows that:

Lemma 3.9. For any x,y € T, with notations as above, we have

(1) 6(e,e) = d(e, f) = o6(f,e) =o(f, /) =0;

(2) 6(exe, fyf) =0=06(fyf, exe);

(3) 6(exe,eyf) = dexeyf = —o(eyf,exe) and é(exf, fyf) = dexfyf = =0(fyf,exf);
(4) 6(exe, eye) = Alexe, eye] and 6(fxf, fyf) = T(DIfxf, fyfl;

(5) 6(exf,eyf) = 0.
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Lemma 3.10. With notations as above, we have that 6 is an inner biderivation.

Proof. Let @ = A+ n(A) € C(7). Since ¢ is bilinear, it follows that

o0(x,y) =6(exe + exf + fxf,eye + eyf + fyf)
=d(exe, eye) + 6(exe,eyf) + o(exe, fyf)
+ o(exf,eye) + d(exf,eyf) + o(exf, fyf)
+6(fxf,eye) + 6(fxf,eyf) + 6(fxf, fyf)
=Alexe, eye] + dexeyf — dexeyf + dexfyf — dexfyf + n(O)Lfxf, fyf]
=alx,y]

for all x,y € 7. Hence ¢ is an inner biderivation.

Proof of Theorem 3.1. Now in view of Remark 3.2, we have ¢ —« = i, where «(x, y) = [x, [y, #(e, e)]].
By Remark 3.3 and Lemmas 3.9, 3.10, we see every bi-Lie n-derivation ¢ can be written as sum of inner
biderivation and a bilinear central mapping vanishing at n-commutators on 7 . Therefore, ¥ = k+d+7,
where k(x,y) = [x, [y, ¢(e, €)]] is an extremal biderivation, 6 : 7 X7 — 7 is an inner biderivation and
y: T XT — C(7) is a biadditive central mapping which vanishes at (n — 1)"-commutators on 7.

As a consequence of Theorem 3.1, we have:

Corollary 3.1. Let T,,(R) be a upper triangular matrix ring with m > 3, where R be an unital ring. If a
bi-additive mapping ¢ : T,,(R) X T,,(R) — T,,(R) be a bi-Lie n-derivation of T,,(R).Then it has the form
¢=C+0+7y whered : T, (R) X T,(R) — T,(R) is an inner biderivation, { : T,,(R) X T,,(R) — T,,(R)
is an extremal biderivation and vy is a bilinear central map vanishing at commutators.

Proof. With the help of [13, Corollary 2.1], it can be seen that upper triangular algebra 7,,,(R) (m > 3)
coincides with the conditions of Theorem 3.1, so this corollary holds.
When n = 2, we have the following corollary.

Corollary 3.2. Let T be a triangular ring and e is the nontrivial idempotent of it. Assume that ¢ :
T XTI — T isabi-Lie derivation and C(f Q,u(T)f, fT ) = C(T)f and either eT C(T )e or fT C(T)f
does not contain nonzero central ideals. Then it has the form ¢ = {+ 6+ vy, where 6 : T XT — T
is an inner biderivation, { : T X T — T is an extremal biderivation and vy is a bilinear central map
vanishing at commutators.

4. Conclusions

The purpose of this article is to prove that every bi-Lie n-derivation of certain triangular rings is
the sum of an inner biderivation, an extremal biderivation and an additive central mapping vanishing
at (n — 1)"-commutators for both components, using the notion of maximal left ring of quotients.
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