Research article Special Issues

On efficient numerical approaches for the study of the interactive dynamics of fractional eco-epidemiological models

  • Received: 13 January 2023 Revised: 08 March 2023 Accepted: 15 March 2023 Published: 07 April 2023
  • MSC : 26A33, 37N25, 74S30, 91B50

  • The present study aims to consider a mathematical eco-epidemiological model involving two fractional operators. To this end, we provide approximate solutions to these fractional systems through the application of a numerical technique that is based on the rule of product integration. This feature contributes greatly to the efficiency and effectiveness of both methods. We have also presented some theoretical discussions related to the equilibrium points of the system. Further, several numerical simulations are presented in order to illustrate the impact of choosing different parameters on the dynamics of the model. It is demonstrated that the obtained numerical results are completely consistent with the expected theoretical results. Moreover, both techniques can be used to solve other problems in epidemiology and describe other problems in the future. The article's model has never been studied via the employed fractional operators, and this is a distinct point for our work and other existing research.

    Citation: Reny George, Shahram Rezapour, Mohammed Shaaf Alharthi, A. F. Aljohani, B. Günay. On efficient numerical approaches for the study of the interactive dynamics of fractional eco-epidemiological models[J]. AIMS Mathematics, 2023, 8(6): 13503-13524. doi: 10.3934/math.2023685

    Related Papers:

  • The present study aims to consider a mathematical eco-epidemiological model involving two fractional operators. To this end, we provide approximate solutions to these fractional systems through the application of a numerical technique that is based on the rule of product integration. This feature contributes greatly to the efficiency and effectiveness of both methods. We have also presented some theoretical discussions related to the equilibrium points of the system. Further, several numerical simulations are presented in order to illustrate the impact of choosing different parameters on the dynamics of the model. It is demonstrated that the obtained numerical results are completely consistent with the expected theoretical results. Moreover, both techniques can be used to solve other problems in epidemiology and describe other problems in the future. The article's model has never been studied via the employed fractional operators, and this is a distinct point for our work and other existing research.



    加载中


    [1] B. Ghanbari, D. Baleanu, Applications of two novel techniques in finding optical soliton solutions of modified nonlinear Schrödinger equations, Results Phys., 44 (2023), 106171. http://doi.org/10.1016/j.rinp.2022.106171 doi: 10.1016/j.rinp.2022.106171
    [2] C. Huang, Z. Han, M. Li, X. Wang, W. Zhao, Sentiment evolution with interaction levels in blended learning environments: using learning analytics and epistemic network analysis, Australas. J. Educ. Technol., 37 (2021), 81–95. http://doi.org/10.14742/ajet.6749 doi: 10.14742/ajet.6749
    [3] S. Lu, B. Yang, Y. Xiao, S. Liu, M. Liu, L. Yin, et al., Iterative reconstruction of low-dose CT based on differential sparse, Biomed. Signal Process. Control, 79 (2023), 104204. http://doi.org/10.1016/j.bspc.2022.104204 doi: 10.1016/j.bspc.2022.104204
    [4] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. http://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [5] Y. Ban, Y. Wang, S. Liu, B. Yang, M. Liu, L. Yin, et al., 2D/3D multimode medical image alignment based on spatial histograms, Appl. Sci., 12 (2022), 8261. http://doi.org/10.3390/app12168261 doi: 10.3390/app12168261
    [6] X. Qin, Y. Ban, P. Wu, B. Yang, S. Liu, L. Yin, et al., Improved image fusion method based on sparse decomposition, Electronics, 11 (2022), 2321. http://doi.org/10.3390/electronics11152321 doi: 10.3390/electronics11152321
    [7] H. Liu, M. Liu, D. Li, W. Zheng, L. Yin, R. Wang, Recent advances in pulse-coupled neural networks with applications in image processing, Electronics, 11 (2022), 3264. http://doi.org/10.3390/electronics11203264 doi: 10.3390/electronics11203264
    [8] H. Mohammadi, S. Kumar, S. Rezapour, S. Etemad, A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control, Chaos Solitons Fract., 144 (2021), 110668. http://doi.org/10.1016/j.chaos.2021.110668 doi: 10.1016/j.chaos.2021.110668
    [9] H. Li, R. Peng, Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. http://doi.org/10.1137/18M1167863 doi: 10.1137/18M1167863
    [10] W. Lyu, Z. Wang, Logistic damping effect in chemotaxis models with density-suppressed motility, Adv. Nonlinear Anal., 12 (2022), 336–355. http://doi.org/10.1515/anona-2022-0263 doi: 10.1515/anona-2022-0263
    [11] H. Y. Jin, Z. A. Wang, Asymptotic dynamics of the one-dimensional attraction–repulsion Keller–Segel model, Math. Methods Appl. Sci., 38 (2015), 444–457. http://doi.org/10.1002/mma.3080 doi: 10.1002/mma.3080
    [12] R. Ye, P. Liu, K. Shi, B. Yan, State damping control: a novel simple method of rotor UAV with high performance, IEEE Access, 8 (2020), 214346–214357. http://doi.org/10.1109/ACCESS.2020.3040779 doi: 10.1109/ACCESS.2020.3040779
    [13] Q. Zeng, B. Bie, Q. Guo, Y. Yuan, Q. Han, X. Han, et al., Hyperpolarized Xe NMR signal advancement by metal-organic framework entrapment in aqueous solution, Proc. Natl. Acad. Sci., 117 (2020), 17558–17563. http://doi.org/10.1073/pnas.2004121117 doi: 10.1073/pnas.2004121117
    [14] X. Zhang, Y. Qu, L. Liu, Y. Qiao, H. Geng, Y. Lin, et al., Homocysteine inhibits pro-insulin receptor cleavage and causes insulin resistance via protein cysteine-homocysteinylation, Cell Rep., 37 (2021), 109821. http://doi.org/10.1016/j.celrep.2021.109821 doi: 10.1016/j.celrep.2021.109821
    [15] M. Wang, L. Deng, G. Liu, L. Wen, J. Wang, K. Huang, et al., Porous organic polymer-derived nanopalladium catalysts for chemoselective synthesis of antitumor benzofuro [2, 3-$b$] pyrazine from 2-bromophenol and isonitriles, Org. Lett., 21 (2019), 4929–4932. http://doi.org/10.1021/acs.orglett.9b01230 doi: 10.1021/acs.orglett.9b01230
    [16] M. Cheng, Y. Cui, X. Yan, R. Zhang, J. Wang, X. Wang, Effect of dual-modified cassava starches on intelligent packaging films containing red cabbage extracts, Food Hydrocolloids, 124 (2022), 107225. http://doi.org/10.1016/j.foodhyd.2021.107225 doi: 10.1016/j.foodhyd.2021.107225
    [17] N. H. Tuan, H. Mohammadi, S. Rezapour, A mathematical model for COVID-19 transmission by using the Caputo fractional derivative, Chaos Solitons Fract., 140 (2020), 110107. http://doi.org/10.1016/j.chaos.2020.110107 doi: 10.1016/j.chaos.2020.110107
    [18] O. Yuan, B. Kato, K. Fan, Y. Wang, Phased array guided wave propagation in curved plates, Mech. Syst. Signal Process., 185 (2023), 109821. http://doi.org/10.1016/j.ymssp.2022.109821 doi: 10.1016/j.ymssp.2022.109821
    [19] Q. Shen, Z. Yang, Applied mathematical analysis of organizational learning culture and new media technology acceptance based on regression statistical software and a moderated mediator model, J. Comput. Methods Sci. Eng., 21 (2021), 1825–1842. http://doi.org/10.3233/JCM-215455 doi: 10.3233/JCM-215455
    [20] Z. Lv, Z. Yu, S. Xie, A. Alamri, Deep learning-based smart predictive evaluation for interactive multimedia-enabled smart healthcare, ACM Trans. Multimedia Comput. Commun. Appl., 18 (2022), 1–20. http://doi.org/10.1145/3468506 doi: 10.1145/3468506
    [21] H. Y Jin, Z. A. Wang, Boundedness, blowup and critical mass phenomenon in competing chemotaxis, J. Differ. Equations, 260 (2016), 162–196. http://doi.org/10.1016/j.jde.2015.08.040 doi: 10.1016/j.jde.2015.08.040
    [22] J. Wang, D. Wu, Y. Gao, X. Wang, X. Li, G. Xu, et al., Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton, J. Bionic Eng., 19 (2022), 1359–1373. http://doi.org/10.1007/s42235-022-00230-z doi: 10.1007/s42235-022-00230-z
    [23] X. Xie, B. Xie, D. Xiong, M. Hou, J. Zuo, G. Wei, et al., New theoretical ISM-K2 Bayesian network model for evaluating vaccination effectiveness, J. Ambient Intell. Humaniz Comput., 2022 (2022), 1–17. http://doi.org/10.1007/s12652-022-04199-9 doi: 10.1007/s12652-022-04199-9
    [24] X. Xie, T. Wang, W. Zhang, Existence of solutions for the $(p, q)$-Laplacian equation with nonlocal Choquard reaction, Appl. Math. Lett., 135 (2023), 108418. http://doi.org/10.1016/j.aml.2022.108418 doi: 10.1016/j.aml.2022.108418
    [25] F. Wang, H. Wang, X. Zhou, R. Fu, A driving fatigue feature detection method based on multifractal theory, IEEE Sens. J., 22 (2022), 19046–19059. http://doi.org/10.1109/JSEN.2022.3201015 doi: 10.1109/JSEN.2022.3201015
    [26] X. Xie, B. Xie, J. Cheng, Q. Chu, T. Dooling, A simple Monte Carlo method for estimating the chance of a cyclone impact, Nat. Hazards, 107 (2021), 2573–2582. http://doi.org/10.1007/s11069-021-04505-2 doi: 10.1007/s11069-021-04505-2
    [27] Y. Liu, K. D. Xu, J. Li, Y. J. Guo, A. Zhang, Q. Chen, Millimeter-wave E-plane waveguide bandpass filters based on spoof surface plasmon polaritons, IEEE Trans. Microw. Theory Tech., 70 (2022), 4399–4409. http://doi.org/10.1109/TMTT.2022.3197593 doi: 10.1109/TMTT.2022.3197593
    [28] K. D. Xu, Y. J. Guo, Y. Liu, X. Deng, Q. Chen, Z. Ma, 60-GHz compact dual-mode on-chip bandpass filter using GaAs technology, IEEE Electron Device Lett., 42 (2021), 1120–1123. http://doi.org/10.1109/LED.2021.3091277 doi: 10.1109/LED.2021.3091277
    [29] B. Dai, B. Zhang, Z. Niu, Y. Feng, Y. Liu, Y. Fan, A novel ultrawideband branch waveguide coupler with low amplitude imbalance, IEEE Trans. Microw. Theory Tech., 70 (2022), 3838–3846. http://doi.org/10.1109/TMTT.2022.3186326 doi: 10.1109/TMTT.2022.3186326
    [30] Y. Feng, B. Zhang, Y. Liu, Z. Niu, Y. Fan, X. Chen, A D-band manifold triplexer with high isolation utilizing novel waveguide dual-mode filters, IEEE Trans. Terahertz Sci. Technol., 12 (2022), 678–681. http://doi.org/10.1109/TTHZ.2022.3203308 doi: 10.1109/TTHZ.2022.3203308
    [31] J. Li, Y. Zhao, A. Zhang, B. Song, R. L. Hill, Effect of grazing exclusion on nitrous oxide emissions during freeze-thaw cycles in a typical steppe of Inner Mongolia, Agric. Ecosyst Environ., 307 (2021), 107217. http://doi.org/10.1016/j.agee.2020.107217 doi: 10.1016/j.agee.2020.107217
    [32] X. Wang, Y. Zhang, M. Luo, K. Xiao, Q. Wang, Y. Tian, et al., Radium and nitrogen isotopes tracing fluxes and sources of submarine groundwater discharge driven nitrate in an urbanized coastal area, Sci. Total Environ., 763 (2021), 144616. http://doi.org/10.1016/j.scitotenv.2020.144616 doi: 10.1016/j.scitotenv.2020.144616
    [33] Z. Wang, L. Dai, J. Yao, T. Guo, D. Hrynsphan, S. Tatsiana, et al., Improvement of Alcaligenes sp. TB performance by Fe-Pd/multi-walled carbon nanotubes: enriched denitrification pathways and accelerated electron transport, Bioresour. Technol., 327 (2021), 124785. http://doi.org/10.1016/j.biortech.2021.124785 doi: 10.1016/j.biortech.2021.124785
    [34] Z. Zhang, P. Ma, R. Ahmed, J. Wang, D. Akin, F. Soto, et al., Advanced point‐of‐care testing technologies for human acute respiratory virus detection, Adv Mater., 34 (2022), 2103646. http://doi.org/10.1002/adma.202103646 doi: 10.1002/adma.202103646
    [35] H. Chen, Q. Wang, Regulatory mechanisms of lipid biosynthesis in microalgae, Biol. Rev., 96 (2021), 2373–2391. http://doi.org/10.1111/brv.12759 doi: 10.1111/brv.12759
    [36] W. Zheng, Y. Xun, X. Wu, Z. Deng, X. Chen, Y. Sui, A comparative study of class rebalancing methods for security bug report classification, IEEE Trans. Reliab., 70 (2021), 1658–1670. http://doi.org/10.1109/TR.2021.3118026 doi: 10.1109/TR.2021.3118026
    [37] H. Kong, L. Lu, J. Yu, Y. Chen, F. Tang, Continuous authentication through finger gesture interaction for smart homes using WiFi, IEEE Trans. Mobile Comput., 20 (2020), 3148–3162. http://doi.org/10.1109/TMC.2020.2994955 doi: 10.1109/TMC.2020.2994955
    [38] C. Li, L. Lin, L. Zhang, R. Xu, X. Chen, J. Ji, et al., Long noncoding RNA p21 enhances autophagy to alleviate endothelial progenitor cells damage and promote endothelial repair in hypertension through SESN2/AMPK/TSC2 pathway, Pharmacol. Res., 173 (2021), 105920. http://doi.org/10.1016/j.phrs.2021.105920 doi: 10.1016/j.phrs.2021.105920
    [39] H. Gao, P. H. Hsu, K. Li, J. Zhang, The real effect of smoking bans: evidence from corporate innovation, J. Financ. Quant. Anal., 55 (2020), 387–427. http://doi.org/10.1017/S0022109018001564 doi: 10.1017/S0022109018001564
    [40] A. K. Alzahrani, A. S. Alshomrani, N. Pal, S. Samanta, Study of an eco-epidemiological model with Z-type control, Chaos Solitons Fract., 113 (2018), 197–208. http://doi.org/10.1016/j.chaos.2018.06.012 doi: 10.1016/j.chaos.2018.06.012
    [41] B. Ghanbari, On approximate solutions for a fractional prey–predator model involving the Atangana-Baleanu derivative, Adv. Differ. Equations, 2020 (2020), 679. http://doi.org/10.1186/s13662-020-03140-8 doi: 10.1186/s13662-020-03140-8
    [42] B. Ghanbari, S. Djilali, Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative, Math. Methods Appl. Sci., 43 (2019), 1736–1752. http://doi.org/10.1002/mma.5999 doi: 10.1002/mma.5999
    [43] Y. Chu, M. F. Khan, S. Ullah, S. A. A. Shah, M. Farooq, M. bin Mamat, Mathematical assessment of a fractional-order vector–host disease model with the Caputo-Fabrizio derivative, Math. Methods Appl. Sci., 46 (2022), 232–247. http://doi.org/10.1002/mma.8507 doi: 10.1002/mma.8507
    [44] W. Shen, Y. Chu, M. ur Rahman, I. Mahariq, A. Zeb, Mathematical analysis of HBV and HCV co-infection model under nonsingular fractional order derivative, Results Phys., 28 (2021), 104582. http://doi.org/10.1016/j.rinp.2021.104582 doi: 10.1016/j.rinp.2021.104582
    [45] B. Ghanbari, Chaotic behaviors of the prevalence of an infectious disease in a prey and predator system using fractional derivatives, Math. Methods Appl. Sci., 44 (2021), 9998–10013. http://doi.org/10.1002/mma.7386 doi: 10.1002/mma.7386
    [46] H. Jin, Z. Wang, L. Wu, Global dynamics of a three-species spatial food chain model. J. Differ. Equations, 333 (2022), 144–183. http://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [47] B. Ghanbari, A fractional system of delay differential equation with nonsingular kernels in modeling hand-foot-mouth disease, Adv. Differ. Equations, 2020 (2020), 536. http://doi.org/10.1186/s13662-020-02993-3 doi: 10.1186/s13662-020-02993-3
    [48] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [49] K. Diethelm, R. Garrappa, A. Giusti, M. Stynes, Why fractional derivatives with nonsingular kernels should not be used, Fractional Calculus Appl. Anal., 23 (2023), 610–634. http://doi.org/10.1515/fca-2020-0032 doi: 10.1515/fca-2020-0032
    [50] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1999.
    [51] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [52] Y. Tan, Y. Cai, R. Yao, M. Hu, E. Wang, Complex dynamics in an eco-epidemiological model with the cost of anti-predator behaviors, Nonlinear Dyn., 107 (2022), 3127–3141. http://doi.org/10.1007/s11071-021-07133-4 doi: 10.1007/s11071-021-07133-4
    [53] R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 16. http://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
    [54] B. Ghanbari, D. Kumar, Numerical solution of predator-prey model with Beddington-DeAngelis functional response and fractional derivatives with Mittag-Leffler kernel, Chaos, 29 (2019), 063103. http://doi.org/10.1063/1.5094546 doi: 10.1063/1.5094546
    [55] B. Ghanbari, C. Cattani, On fractional predator and prey models with mutualistic predation including non-local and nonsingular kernels, Chaos Solitons Fract., 136 (2020), 109823. http://doi.org/10.1016/j.chaos.2020.109823 doi: 10.1016/j.chaos.2020.109823
    [56] B. Ghanbari, S. Kumar, R. Kumar, A study of behaviour for immune and tumor cells in immunogenetic tumour model with non-singular fractional derivative, Chaos Solitons Fract., 133 (2020), 109619. http://doi.org/10.1016/j.chaos.2020.109619 doi: 10.1016/j.chaos.2020.109619
    [57] B. Ghanbari, On fractional approaches to the dynamics of a SARS-CoV-2 infection model including singular and non-singular kernels, Results Phys., 28 (2021), 104600. http://doi.org/10.1016/j.rinp.2021.104600 doi: 10.1016/j.rinp.2021.104600
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1288) PDF downloads(83) Cited by(1)

Article outline

Figures and Tables

Figures(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog