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1. Introduction

A great deal of attention has been paid to the use of mathematical tools in recent years to better
describe phenomena in the world, such as nonlinear optics [1], network analysis [2], biomedical
signal processing [3], mathematical modelling of human liver [4], medical imaging [5, 6], neural
networks [7], optimal control [8], a diffusive epidemic model [9], chemical signal concentration [10],
attraction-repulsion [11], control theory [12], signal advancement [13], computational approaches in
medicine [14], nanoscience [15], artificial intelligence [16], fractional mathematical model [17], wave
propagation [18], and applied mathematical analysis [19]. These eras of research have attracted the
attention of many scholars in both science and engineering disciplines and led to the development of
many efficient numerical methods. For example, deep learning technique in [20], the Lyapunov
functional approach in [21], convolutional neural network in [22], interpretive structural modeling
in [23], variational methods in [24], fractal concepts in [25], the Monte Carlo analysis in [26], wave
filters in [27, 28]. Other methodologies include optical waveguides in [29], optimization methods
in [30], high-frequency measurements in [31], quantitative evaluations in [32], carbon nanotubes
computations in [33], microfluidics in [34, 35], classification algorithms in [36]. For more
applications, please refer to [37–39].

The purpose of this article is to examine an eco-epidemiological model that simulates how diseases
spread in a natural environment under the influence of several factors. Recently, these types of models
have gained increasing attention due to the spread and epidemic of infectious diseases. For instance,
the authors of [40] have considered the following eco-epidemiological model:

dH1(t)
dt = rH1(t) − bH2

1 (t) − cH1(t)H2(t) − α1H1(t)H3(t)
e+H1(t) −

βH1(t)H2(t)
a+H1(t) ,

dH2(t)
dt =

βH1(t)H2(t)
a+H1(t) −

α2H3(t)H2(t)
d+H2(t) − µH2(t),

dH3(t)
dt =

α1c1H1(t)H3(t)
e+H1(t) +

c2α2H3(t)H2(t)
d+H2(t) − mH3(t),

(1.1)

where H1(t),H2(t) and H3(t) are three state variables that denote susceptible and infected prey and
predator, respectively. In [41], the following prey-predator model with Atangana-Baleanu derivative
model has been investigated:

dH1(t)
dt = H1(t)

[
1 −H1(t) − β12H2(t)

]
+ δH1(t)H3(t),

dH2(t)
dt = rH2(t)

[
1 −H2(t) − β21H1(t)

]
−

(1−p)H2(t)H3(t)
m1+(1−p)H2(t) ,

dH3(t)
dt = H3(t)

[
−m2 +

m3(1−p)H2(t)
m1+(1−p)H2(t)

]
.

(1.2)

More details of the model can be found in [41].
In [42], a three-species predator-prey model in the presence of prey social behavior given by

dH1(t)
dt = rH1(t)

(
1 − H1(t)

k

)
− βHα1 (t)H2(t) − aHα1 (t)H3(t),

dH2(t)
dt = βHα1 (t)H2(t) − cH3(t)H2(t) − mH2(t),

dH3(t)
dt = cH3(t)H2(t) + aHα1 (t)H3(t) − µH3(t),

(1.3)

has been studied.
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Research on infectious diseases has recently attracted a great deal of attention. For instance, the
outbreak of vector-host diseases is modeled mathematically in [43] using a fractional model with
Caputo-Fabrizio derivative. Other studies include the model for hepatitis B virus (HBV) and hepatitis
C virus (HCV) co-infection in [44], prevalence of an infectious disease in a prey and predator system
in [45], food chain model in [46], and hand-foot-mouth disease in [47]. During the past few decades,
fractional calculus operators have become one of the effective tools for modeling various
mathematical, physical and engineering problems. Probably the key reason for the increase in
popularity of these operators is that they benefit from memory features as one of their main
properties. Considering this valuable attribute of the operators, they are invaluable in biological
modeling, since what happens in the present will be heavily influenced by what happened in the past
with those variables.

In this paper, we incorporate two fractional operators, the Atangana-Baleanu-Caputo and Caputo-
Fabrizio-Caputo, into a novel biological system [48]. These kinds of operators have been employed in
many studies so far. However, their use should be accompanied by caution and compliance with some
necessary conditions as outlined in [49].

Below is a breakdown of the remaining sections. First, some prerequisites are presented in the
second part of this paper, including definitions and properties of fractional operators. The main system
of the article is introduced in Section 3. A theoretical analysis of the model is presented in Section 4.
The basic ideas for obtaining the numerical techniques for the model are presented in Section 5. In
Section 6, we discuss the approximate solutions corresponding to the numerical methods used, as well
as their implications. In the last section, we discuss several concluding remarks.

2. An overview of fractional calculus

In this section, first, it is necessary to have a brief overview of some useful preliminary theorems in
the field of differential calculus of fractional order.

Definition 2.1. The derivative and integral Caputo type (Cap) operators are respectively given by [50]

CapD℘H(t) =
1

Γ(k − ℘)

∫ t

0
(t − ζ)m−℘−1ω(k)(ζ)dζ, k − 1 < ℘ ≤ k, k ∈ N, (2.1)

and

CapI℘H(t) =
1
Γ(℘)

∫ t

0
(t − ζ)℘−1ω(ζ)dζ, 0 < ℘ < 1. (2.2)

Definition 2.2. The derivative and integral Atangana-Baleanu-Caputo (ABC) operators are respectively
given by [48]

ABCD℘H(t) =
W(℘)
1 − ℘

∫ t

0
M℘

[
−
℘

1 − ℘
(t − ζ)

]
ω′(ζ)dζ, ℘ ∈ (0, 1), (2.3)

ABCI℘H(t) =
1 − ℘
W(℘)

H(t) +
℘

W(℘)Γ(℘)

∫ t

t0
(t − µ)℘−1ω(ζ)dζ, (2.4)

where
W(℘) = 1 − ℘ +

℘

Γ(℘)
,
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andM℘(ζ) is the Mittag-Leffler function given by

M℘(t) =
∞∑
j=0

t j

Γ(1 + j℘)
. (2.5)

After applying the integral operator ABC defined in (2.4) to the differential operator (2.3), one
concludes that

ABCI℘
(

ABCD℘H(t)
)
= H(t) −H(0). (2.6)

The Laplace transform corresponding to the ABC operator defined by (2.3) is obtained as

L
[
ABCD℘H(t)

]
=
W(℘)
1 − ℘

sL
[
H(t)

]
− s℘−1H(0)

s + ℘
1−℘

. (2.7)

Definition 2.3. The derivative and integral Caputo-Fabrizio-Caputo (CFC) operators are respectively
given by [51]

CFCD℘H(t) =
Q(℘)
k − ℘

∫ t

0

dkω(ζ)
dζk exp

[
−
℘

n − ℘
(t − ζ)

]
dζ, k − 1 < ℘ ≤ k, (2.8)

CFCI℘H(t) =
2(1 − ℘)

(2 − ℘)Q(℘)
H(t) +

2℘
(2 − ℘)Q(℘)

∫ t

0
ω(ζ)dζ, (2.9)

where
Q(℘) =

2
2 − ℘

. (2.10)

The Laplace transform corresponding to the CFC operator defined by (2.8) is obtained as [41]

L
[
CFCD℘H(t)

]
=

sn+1L
[
H(t)

]
− snH(0) − sn−1H ′(0) − . . . −H (n)(0)

s + ℘(1 − s)
, n − 1 < ℘ ≤ n. (2.11)

3. The main model

The main focus of this paper is to study the mathematical description of interactions between the
populations of susceptible and infected prey given by H1(t) and H2(t), respectively. Moreover, H3(t)
denotes the predator population. The mathematical description of the interactions of these components
is expressed by the following nonlinear system [52]:

dH1(t)
dt =

aH1(t)
1+κH3(t) − dH1(t) − bH1(t)(H1(t) +H2(t)) − βH1(t)H2(t),

dH2(t)
dt = βH1(t)H2(t) − pH2(t)H3(t) − δH2(t),

dH3(t)
dt = cpH2(t)H3(t) − µH3(t).

(3.1)

In this model, it is assumed that the only population that is infected by infectious disease is that of
the prey. Moreover, infected prey are consumed by predators, while susceptible prey do not fall under
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their diet. The parameters of the model are as follows: a represents the birth rate of the susceptible
prey, d is used to explain the rate of natural death in susceptible prey, b stands for the density-dependent
death rate based on intra-species competition, and β describes the contact rate between the susceptible
and the infected prey. Moreover, p shows the attack rate on the infected prey, and the death rate
of the infected prey is presented by δ, c demonstrates the conversion coefficient. Also, µ shows the
corresponding natural rate of the death for predator populations, and finally, the parameter κ denotes
the level of fear which drives anti-predator behavior of the prey [40]. A comprehensive explanation of
the formation of this non-linear model can be found in [40].

In this paper, we will apply two more recent definitions of fractional differential calculus in the
model presented by (3.1). First, let us replace standard derivatives in the model with the ABC fractional
derivative (2.3) to get the following fractional model:

ABCD℘H1(t) = aH1(t)
1+κH3(t) − dH1(t) − b(H1

2(t) +H1(t)H2(t)) − βH1(t)H2(t),
ABCD℘H2(t) = βH1(t)H2(t) − pH2(t)H3(t) − δH2(t),
ABCD℘H3(t) = cpH2(t)H3(t) − µH3(t),

(3.2)

subject to initial conditions

(H1(t = 0),H2(t = 0),H3(t = 0)) = (H1,0,H2,0,H3,0) ≥ 0.

Moreover, by applying the CFC fractional derivative (2.8) in the model, we arrive at the following
fractional model:

CFCD℘H1(t) = aH1(t)
1+κH3(t) − dH1(t) − b(H1

2(t) +H1(t)H2(t)) − βH1(t)H2(t),
CFCD℘H2(t) = βH1(t)H2(t) − pH2(t)H3(t) − δH2(t),
CFCD℘H3(t) = cpH2(t)H3(t) − µH3(t).

(3.3)

4. Mathematical analysis for model

In order to find more analytical intuition of the model (3.2), some related mathematical analyses are
collected in this section.

4.1. The basic reproduction number

In this model, the basic reproduction number R0 for system (3.2) is calculated as [52]

R0 =
aβ
bδ
. (4.1)

4.2. The equilibrium points

The following positive equilibrium points can be calculated for the model (3.2).

• The trivial point of P0 = (0, 0, 0).

• The axial point of P1 =
(

a−d
b , 0, 0

)
. This point exists if we have a > d.
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• The axial equilibrium point of P2 =
(
δ
β
, aβ−bδ−dβ
β(b+β) , 0

)
. This point exists if we have aβ − bδ > dβ.

• Other equilibrium points Pi = (H∗1 ,H
∗
2 ,H

∗
3 ) of the system can be evaluated by determining the

positive solutions of the following nonlinear algebraic system:

aH∗1
1+κH∗3

− dH∗1 − bH∗1 (H∗1 +H
∗
2 ) − βH∗1H

∗
2 = 0,

βH∗1H
∗
2 − pH∗2H

∗
3 − δH

∗
2 = 0,

cpH∗2H
∗
3 − µH

∗
3 = 0.

(4.2)

The local stability for these equilibrium points Pi = (H∗1 ,H
∗
2 ,H

∗
3 ) can be explored using the

Jacobian matrix as

J(H∗1 ,H
∗
2 ,H

∗
3 ) =


a

κH∗3+1 − d − b
(
2H∗1 +H

∗
2

)
− βH∗2 −bH∗1 − βH

∗
1 −

aH∗1 κ

(κH∗3+1)2

βH∗2 βH∗1 − pH∗3 − δ −pH∗2
0 cpH∗3 cpH∗2 − µ

 . (4.3)

4.3. The existence of the solution for the model (3.2)

To this end, let us employ the ABC integral operator (2.4) on the system (3.2). Then, we get

H1(t) −H1(0) =
1 − ℘
W(℘)

Q1(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1Q1(H(ζ))dζ,

H2(t) −H2(0) =
1 − ℘
W(℘)

Q2(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1Q2(H(ζ))dζ,

H3(t) −H3(0) =
1 − ℘
W(℘)

Q3(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1Q3(H(ζ))dζ,

(4.4)

where H(t) =
[
H1(t),H2(t),H3(t)

]
, and also we define

Q1(H(t)) = aH1(t)
1+κH3(t)H1(t) − d − bH1(t)(H1(t) +H2(t)) − βH1(t)H2(t),

Q2(H(t)) = βH1(t)H2(t) − pH2(t)H3(t) − δH2(t),
Q3(H(t)) = cpH2(t)H3(t) − µH3(t).

(4.5)

Define
M(H(t)) = [Q1(H(t)),Q2(H(t)),Q3(H(t))] ,

and moreover
H0 =

[
H1(0),H2(0),H3(0)

]
.

Using these assumptions, Eq (4.4) can be rewritten as

H(t) −H0 =
1 − ℘
W(℘)

M(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(H(ζ))dζ. (4.6)

Then, from (4.6) along with H0(t) = H0, the following recursive structure is conceivable:

Hn(t) −H0 =
1 − ℘
W(℘)

M(Hn−1(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(Hn−1(ζ))dζ. (4.7)
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Considering Eq (4.7), we will have

Hn(t) −Hn−1(t) =
1 − ℘
W(℘)

[M(Hn−1(t)) −M(Hn−2(t))] (4.8)

+
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1 [

M(Hn−1(ζ)) −M(Hn−2(ζ))
]
dζ. (4.9)

In this position, we define
ϱn(t) = Hn(t) −Hn−1(t).

Then, it follows that

Hn(t) =
n∑

i=0

ϱi(t). (4.10)

As a result, one gets

∥ϱn(t)∥ = ∥Hn(t) −Hn−1(t)∥,

∥ϱn(t)∥ = ∥
1 − ℘
W(℘)

[M(Hn−1(t)) −M(Hn−2(t))] (4.11)

+
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1 [

M(Hn−1(ζ)) −M(Hn−2(ζ))
]
dζ∥.

Hence, we have

∥ϱn(t)∥ ≤
1 − ℘
W(℘)

∥M(Hn−1(t)) −M(Hn−2(t))∥

+
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1∥M(Hn−1(ζ)) −M(Hn−2(ζ))∥dζ. (4.12)

Now, our main assumption will be that the nonlinear operator M has the Leibniz condition, so we
can write

∥ϱn(t)∥ ≤
1 − ℘
W(℘)

L∥Hn−1(t) −Hn−2(t)∥ +
℘L

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1∥Hn−1(t) −Hn−2(t)∥dζ.

Consequently, we derive the following inequality:

∥ϱn(t)∥ ≤
1 − ℘
W(℘)

L∥ϱn−1(t)∥ +
℘L

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1∥ϱn−1(t)∥dζ.

Further, replacing ∥ϱn−1(t)∥, one arrives at

∥ϱn(t)∥ ≤
(

1 − ℘
W(℘)

L +
℘Lt℘

W(℘)Γ(℘ + 1)

)2

∥ϱn−2(t)∥.

Also, it reads

∥ϱn(t)∥ ≤
(

1 − ℘
W(℘)

L +
℘Lt℘

W(℘)Γ(℘ + 1)

)3

∥ϱn−3(t)∥.
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And, finally, we obtain

∥ϱn(t)∥ ≤
(

1 − ℘
W(℘)

L +
℘Lt℘

W(℘)Γ(℘ + 1)

)n

∥ϱ0(t)∥

≤

(
1 − ℘
W(℘)

+
℘t℘

W(℘)Γ(℘ + 1)

)n

Lnmaxt∈[0,T ]H0(t). (4.13)

Now, let us define

H(t) =
n∑

i=0

ϱi(t). (4.14)

In addition, according to the H(t) structure, it holds that

H(t) = Hn(t) + θn(t), (4.15)

where θn(t)→ 0 when n(t)→ ∞. Thus,

H(t) −Hn(t) =
1 − ℘
W(℘)

M(H(t) − θn(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(H(ζ) − µn(ζ))dζ. (4.16)

Now, we can write

H(t) − H0 −
1 − ℘
W(℘)

M(H(t) − θn(t)) −
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(H(ζ) − µn(ζ))dζ

= θn(t) +
1 − ℘
W(℘)

[M(H(t) − θn(t)) −M(H(t))] (4.17)

−
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1

[
M(H(ζ) − µn(ζ)) −M(H(ζ))

]
dζ.

After applying the norm of the above equation, we will have

∥H(t) −H0(t) −
1 − ℘
W(℘)

M(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(H(ζ)dζ∥

≤ ∥θn(t)∥ +
1 − ℘
W(℘)

∥M(H(ζ) − µn(ζ)) −M(H(ζ))∥

+
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1∥M(H(ζ) − µn(ζ)) −M(H(ζ))∥dζ

≤ ∥θn(t)∥ +
1 − ℘
W(℘)

L∥θn−1(t)∥+
℘t℘

W(℘)Γ(℘ + 1)
L∥θn−1(t)∥.

For n→ ∞, we have

H(t) −H0 =
1 − ℘
W(℘)

M(H(t)) +
℘

W(℘)Γ(℘)

∫ t

0
(t − ζ)℘−1M(H(ζ))dζ. (4.18)

This will be the result for the existence of the solution.
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4.4. The uniqueness of the solution

In order to prove the uniqueness of the solution, let us assume that H1(t) and H2(t) are two solutions
to the problem. So, we have

∥H1(t) −H2(t)∥ ≤
1 − ℘
W(℘)

L∥H1(t) −H2(t)∥ +
℘Lt℘

W(℘)Γ(℘ + 1)
∥H1(t) −H2(t)∥

≤

(
1 − ℘
W(℘)

L +
℘Lt℘

Θ(1 + ℘)Γ(℘)

)
∥H1(t) −H2(t)∥

...

≤

(
1 − ℘
W(℘)

L +
℘Lt℘

Θ(1 + ℘)Γ(℘)

)n

∥H1(t) −H2(t)∥.

So, if we have
1 − ℘
W(℘)

L +
℘Lt℘

Θ(1 + ℘)Γ(℘)
< 1,

then by taking n→ ∞, we obtain (
1 − ℘
W(℘)

L +
℘Lt℘

Θ(1 + ℘)Γ(℘)

)n

→ 0.

Thus, ∥H1(t) −H2(t)∥ = 0 holds. Therefore, H1(t) = H2(t) results.

5. Numerical techniques

Along with providing new differential operators in fractional calculus, the most important concern
will always be the design of efficient approximate algorithms for solving those problems numerically.
Thus, there is always a numerical method that needs to be developed for each new definition of an
operator. There are advantages, limitations, and requirements associated with each of these numerical
methods. Our objective in this section is to design two numerical techniques using the definition of the
product integration rule (PI), as outlined in [53].

5.1. A numerical scheme for ABC fractional problem (3.2)

To extract an efficient numerical technique for ABC fractional problems, we take the following
fractional Cauchy problem:

ABCD℘H(t) = N(t,H(t)). (5.1)

Based on the application of the ABC fractional integral definition in Eq (2.4) on Eq (5.1), we derive
the integral equation as follows:

H(t) −H(t0) =
1 − ℘
W(℘)

N(t,H(t)) +
℘

W(℘)Γ(℘)

∫ t

t0
(t − ζ)℘−1N(ζ,H(ζ))dζ. (5.2)

Setting t = tn = t0 + n∆t in Eq (5.2) yields

H(tn) = H(t0) +
1 − ℘
W(℘)

N(tn,H(tn)) +
℘

W(℘)Γ(℘)

n−1∑
i=0

∫ ti+1

ti
(tn − ζ)℘−1N(ζ,H(ζ))dζ. (5.3)
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Now, a linearized form of N(ζ,H(ζ)) is considered as follows:

N(ζ,H(ζ)) ≈ N(ti+1,Hi+1) +
ζ − ti+1

∆t
(N(ti+1,Hi+1) − N(ti,Hi)) , ζ ∈ [ti, ti+1], (5.4)

whereHi = H(ti).
Using (5.4) in (5.3), and also by doing some algebraic calculations, we obtain [54–56]:

Hn = H0 +
℘∆t
W(℘)

νnN(t0,H0) +
n∑

i=1

ζn−iN(ti,Hi)

 , n ≥ 1, (5.5)

where

σn =
(−1 + n)℘+1 − n(−1 + n − ℘)

Γ(℘ + 2)
,

ζi =
{ 1−℘
℘∆t +

1
Γ(℘+2) , i = 0,

(i−1)℘+1−2i℘+1+(i+1)℘+1

Γ(℘+2) , i = 1, 2, . . . , n − 1.

(5.6)

As a result of (5.5) and (5.6), one can effectively assess the approximate solution to the fractional
system (5.1). In particular, to approximate the problem (3.2), we will have

H1,n = H1,0 +
℘∆t
W(℘)

[
σn

( aH1,0

1 + κH3,0
H1,0 − d − bH1,0(H1,0 +H2,0) − βH1,0H2,0

)
+

n∑
i=0

ζn−i

( aH1,i

1 + κH3,i
H1,i − d − bH1,i(H1,i +H2,i) − βH1,iH2,i

)]
,

H2,n = H2,0 +
℘∆t
W(℘)

[
σn

(
βH1,0H2,0 − pH2,0H3,0 − δH2,0

)
+

n∑
i=0

ζn−i

(
βH1,iH2,i − pH2,iH3,i − δH2,i

)]
,

H3,n = H3,0 +
℘∆t
W(℘)

[
σn

(
cpH2,0H3,0 − µH3,0

)
+

n∑
i=0

ζn−i

(
cpH2,iH3,i − µH3,i

)]
.

(5.7)

These resulting schemes have implicit structures which can be solved utilizing efficient techniques
in solving systems of nonlinear algebraic equations like Newton’s method.

5.2. A numerical scheme for CFC fractional problem (3.3)

In this part, to extract a numerical scheme for CFC fractional problem (3.3), we study the following
fractional system:

CFCD℘H(t) = N(t,H(t)). (5.8)

Utilizing the corresponding fractional integral operator (2.9) on both sides of (5.8) yields

H(t) −H(0) =
1 − ℘
Q(℘)

N(t,H(t)) +
℘

Q(℘)

∫ t

0
N(ζ,H(ζ))dζ. (5.9)

Taking t = tn+1 in (5.9), one has
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H(tn+1) −H(0) =
(2 − ℘)(1 − ℘)

2
N(tn,H(tn)) +

℘(2 − ℘)
2

∫ tn+1

0
N(ζ,H(ζ))dζ, (5.10)

and

H(tn) −H(0) =
(2 − ℘)(1 − ℘)

2
N(tn−1,H(tn−1)) +

℘(2 − ℘)
2

∫ tn

0
N(ζ,H(ζ))dζ. (5.11)

Inserting Eq (5.11) into Eq (5.10), we obtain

H(tn+1) = H(tn) +
(2 − ℘)(1 − ℘)

2
[
N(tn,H(tn)) − N(tn−1,H(tn−1))

]
+
℘(2 − ℘)

2

∫ tn+1

tn
N(ζ,H(ζ))dζ,

(5.12)

where ∫ tn+1

tn
N(ζ,H(ζ))dζ =

3∆t
2
N(tn,Hn) −

∆t
2
N(tn−1,Hn−1). (5.13)

Thus, we get

Hn+1 = Hn +

[
(2 − ℘)(1 − ℘)

2
+

3∆t
4
℘(2 − ℘)

]
N(tn,Hn)

−

[
(2 − ℘)(1 − ℘)

2
+
∆t
4
℘(2 − ℘)

]
N(tn−1,Hn−1).

(5.14)

Accordingly, the following iterative schemes are determined in order to approximate the problem (3.3)
in the following manner [57]:

H1,n+1 = H1,n +

[
(2 − ℘)(1 − ℘)

2
+

3∆t
4
℘(2 − ℘)

]  aH1,n

1+κH3,n
H1,n − d − βH1,nH2,n

−bH1,n(H1,n +H2,n)


−

[
(2 − ℘)(1 − ℘)

2
+
∆t
4
℘(2 − ℘)

]  aH1,n

1+κH3,n
H1,n−1 − d − βH1,n−1H2,n−1

−bH1,n−1(H1,n−1 +H2,n−1)

 ,
H2,n+1 = H2,n +

[
(2 − ℘)(1 − ℘)

2
+

3∆t
4
℘(2 − ℘)

] (
βH1,nH2,n − pH2,nH3,n − δH2,n

)
−

[
(2 − ℘)(1 − ℘)

2
+
∆t
4
℘(2 − ℘)

] (
βH1,n−1H2,n−1 − pH2,n−1H3,n−1 − δH2,n−1

)
,

H3,n+1 = H3,n +

[
(2 − ℘)(1 − ℘)

2
+

3∆t
4
℘(2 − ℘)

] (
cpH2,nH3,n − µH3,n

)
−

[
(2 − ℘)(1 − ℘)

2
+
∆t
4
℘(2 − ℘)

] (
cpH2,n−1H3,n−1 − µH3,n−1

)
.

(5.15)

The results of scheme model (3.3) will be obtained using these explicit iterative schemes.
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6. Numerical discussions

A description of the numerical properties of the system is presented in this section. To this end, it
is imperative to examine the equilibrium points for the model in more detail.

As mentioned earlier, the positive equilibrium point of

Pi = (H∗1 ,H
∗
2 ,H

∗
3 )

for the model is a positive solution for the following system:

aH∗1
1+κH∗3

− dH∗1 − bH∗1 (H∗1 +H
∗
2 ) − βH∗1H

∗
2 = 0,

βH∗1H
∗
2 − pH∗2H

∗
3 − δH

∗
2 = 0,

cpH∗2H
∗
3 − µH

∗
3 = 0.

(6.1)

From the last equation of (6.1), we immediately conclude that

H∗2 =
µ

cp
. (6.2)

Considering this result in the second equation of the system, it reads

H∗1 =
pH∗3 + δ
β

. (6.3)

Taking these results into account in the first equation of the system along with some simplifications,
a quadratic equation forH∗3 is obtained as

C2H
∗
3

2
+ C1H

∗
3 + C0 = 0, (6.4)

where

C2 = bcκ p2,

C1 = bcδκp + βcdκp + bβκµ + bc p2 + β2κµ,

C0 = −aβcp + bδcp + dβcp + bµβ + β2µ.

The performed numerical simulations in this paper are based on the following parameters:

a = 0.5, d = 0.1, b = 0.1, p = 1, δ = 0.2, c = 0.8, µ = 0.3, β = 0.5, κ = 0.4. (6.5)

For these particular choices, the equilibrium point for the model will be determined as follows:(
H∗∗1 ,H

∗∗
2 ,H

∗∗
3
)
= (1.120356776, 0.375, 0.3601783881) . (6.6)

In what will come later in this section, the level of sensitivity of the model to the existing parameters
will be checked. These results can be considered a confirmation of the theoretical results related to the
model.
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6.1. The effects of fractional order (℘)

Figures 1 and 2 demonstrate the model’s sensitivity to the changes of the parameter ℘ in the two
approximate methods of the article. Convergence of the model to equilibrium point

(
H∗∗1 ,H

∗∗
2 ,H

∗∗
3

)
is

evident in these graphs.
It seems that in Figure 1, for smaller values of ℘, the speed of convergence to the balanced point of

the system occurs faster, and with its increase, the results will be more unstable and accompanied by
fluctuating behavior.

It seems that in Figure 2, the oscillatory behavior increases in the model, and as a result the speed
of convergence is very slow.

Figure 1. The results of schemes (5.5) and (5.6) obtained from different values of ℘.

Figure 2. The results of scheme (5.15) obtained from different values of ℘.

6.2. The effects of fear factor (κ)

The fear parameter (κ) is one of the most important components defined in the model, and it strongly
influences the type of system behavior. In [52], a detailed analysis of the effect of this parameter on the
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results is presented and can be considered a good benchmark for comparing our results. Figures 3 and 4
demonstrate the model’s sensitivity with respect to the changes of parameter κ in the two approximate
methods of the article.

Figure 3. The results of schemes (5.5) and (5.6) obtained from different values of κ together
with ℘ = 0.98.

Figure 4. The results of scheme (5.15) obtained from different values of κ together with
℘ = 0.98.

In this case, the positive equilibrium point is
(

pH∗3+δ
β
, µcp ,H

∗
3

)
whereH∗3 is determined from

0.08κH∗3
2
+ (0.146κ + 0.08)H∗3 − 0.054 = 0. (6.7)

In Figures 3 and 4, for κ = 0, with no fear factor, the equilibrium point of the system is obtained(
H∗1 ,H

∗
2 ,H

∗
3
)
= (1.75, 0.375, 0.675),
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whose Jacobian matrix is

J(H∗1 ,H
∗
2 ,H

∗
3 ) =


− 7

40 −
21
20 0

3
16 0 −3

8
0 27

50 0

 , (6.8)

with the following eigenvalues:
−0.09046466345

−0.04226766828 + 0.6244525470 i
−0.04226766828 − 0.6244525470 i

 .
This is a clear proof of the stability of this equilibrium point.

Also, for κ = 0.4, the equilibrium point of the system is obtained(
H∗1 ,H

∗
2 ,H

∗
3
)
= (1.120356778, 0.375, 0.360178389),

whose Jacobian matrix is

J(H∗1 ,H
∗
2 ,H

∗
3 ) =


−3649+169

√
241

1080+520
√

241
471
200 −

39
√

241
200

31400−2600
√

241

(27+13
√

241)2

3
16 0 −3

8

0 −173
100 +

13
√

241
100 0

 , (6.9)

with the following eigenvalues:
−0.01004360203 + 0.4818151018 i
−0.01004360203 − 0.4818151018 i

−0.09194847354

 .
With the increase of the real negative parts of the eigenvalues, the instability of the system is gradually
increased, which is also clearly evident in the graphs. Finally, for κ = 1, we have a unique positive
equilibrium (

H∗1 ,H
∗
2 ,H

∗
3
)
= (0.843122550, 0.375, 0.221561275),

whose Jacobian matrix is

J(H∗1 ,H
∗
2 ,H

∗
3 ) =


−2029+13

√
17089

−1320+40
√

17089
291
200 −

3
√

17089
200

7760−80
√

17089

(−33+
√

17089)2

3
16 0 −3

8

0 −113
100 +

√
17089
100 0

 , (6.10)

with the following eigenvalues:
0.004096458172 + 0.4025677279 i
0.004096458172 − 0.4025677279 i

−0.09250517127

 .
So, a clear proof of the instability of this equilibrium point is observed.

The numerical results obtained in this case are completely consistent with the numerical properties
reported in [52].
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6.3. The effects of the contact rate between the susceptible and the infected prey (β)

Figures 5 and 6 demonstrate the model’s sensitivity with respect to the changes of parameter β in
the two approximate methods of the article.

Figure 5. The results of schemes (5.5) and (5.6) obtained from different values of β together
with ℘ = 0.98.

Figure 6. The results of scheme (5.15) obtained from different values of β together with
℘ = 0.98.

In these diagrams, it can be seen that as β increases, the equilibrium type changes from an interior
point to a planar point. For these situations, the infected predator population is on the way to extinction.
For example, for β = 1.2, we have a unique positive equilibrium(

H∗1 ,H
∗
2 ,H

∗
3
)
= (0.1666666667, 0.2948717949, 0),

whose Jacobian matrix is
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J(H∗1 ,H
∗
2 ,H

∗
3 ) =


−0.0166666667 −0.2166666667 −0.03333333334
0.3538461539 0.0 −0.2948717949

0 0.0 −0.0641025641

 , (6.11)

with the following eigenvalues:
−0.008333333350 + 0.2767620318 i
−0.008333333350 − 0.2767620318 i

−0.06410256410

 .
6.4. The effects of the attack rate on the infected prey (p)

Figures 7 and 8 demonstrate the model’s sensitivity with respect to the changes of the attack rate on
the infected prey in the two approximate methods of the article.

Figure 7. The results of schemes (5.5) and (5.6) obtained from different values of p together
with ℘ = 0.98.

Figure 8. The results of scheme (5.15) obtained from different values of p together with
℘ = 0.98.
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The important thing that can be seen from the results is that with the increase of the value for the
parameter, the type of equilibrium point in the problem changes completely.

7. Conclusions

The models in eco-epidemiology are computational tools that describe ecology and epidemiology
problems in a meaningful way. The use of novel mathematical definitions in modeling
eco-epidemiological scenarios can be very helpful and lead to significant results in real-world
problems. The aim of this paper is to study a nonlinear predator-prey system where the prey growth
rate is reduced due to anti-predator behavior. This paper employs two new definitions in fractional
calculus called the ABC and CFC fractional derivatives. These two definitions are useful tools that
can be used for solving the model. Our research results may be of great value to scholars in the
future, when they want to apply our employed techniques to model real problems related to the
epidemic and control it more efficiently.
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