Research article Special Issues

On periodic Ambrosetti-Prodi-type problems

  • Received: 23 December 2022 Revised: 09 March 2023 Accepted: 17 March 2023 Published: 31 March 2023
  • MSC : 34B15, 34B18, 34L30

  • This work presents a discussion of Ambrosetti-Prodi-type second-order periodic problems. In short, the existence, non-existence, and multiplicity of solutions will be discussed on the parameter $ \lambda $. The arguments rely on a Nagumo condition, to guarantee an apriori bound on the first derivative, lower and upper-solutions method, and the Leray-Schauder's topological degree theory. There are two types of new results based on the parameter's variation: An existence and non-existence theorem and a multiplicity theorem, proving the existence of a bifurcation point. An application to a damped and forced pendulum is studied, suggesting a method to estimate the critical values of the parameter.

    Citation: Feliz Minhós, Nuno Oliveira. On periodic Ambrosetti-Prodi-type problems[J]. AIMS Mathematics, 2023, 8(6): 12986-12999. doi: 10.3934/math.2023654

    Related Papers:

  • This work presents a discussion of Ambrosetti-Prodi-type second-order periodic problems. In short, the existence, non-existence, and multiplicity of solutions will be discussed on the parameter $ \lambda $. The arguments rely on a Nagumo condition, to guarantee an apriori bound on the first derivative, lower and upper-solutions method, and the Leray-Schauder's topological degree theory. There are two types of new results based on the parameter's variation: An existence and non-existence theorem and a multiplicity theorem, proving the existence of a bifurcation point. An application to a damped and forced pendulum is studied, suggesting a method to estimate the critical values of the parameter.



    加载中


    [1] A. Ambrosetti, G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pur. Appl., 93 (1972), 231–246. https://doi.org/10.1007/BF02412022 doi: 10.1007/BF02412022
    [2] V. Ambrosio, T. Isernia, The critical fractional Ambrosetti-Prodi problem, Rend. Circ. Mat. Palerm., 71 (2022), 1107–1132. https://doi.org/10.1007/s12215-022-00757-4 doi: 10.1007/s12215-022-00757-4
    [3] C. Bereanu, J. Mawhin, Multiple periodic solutions of ordinary differential equations with bounded nonlinearities and $\varphi$-Laplacian, Nonlinear Differ. Equ. Appl., 15 (2008), 159–168. https://doi.org/10.1007/s00030-007-7004-x doi: 10.1007/s00030-007-7004-x
    [4] C. de Coster, P. Habets, Two-point boundary value problems: Lower and upper solutions, Elsevier, 2006.
    [5] L. Ding, M. Sun, R. Tian, A remark on the Ambrosetti-Prodi type problem, Appl. Math. Lett., 111 (2021), 106648. https://doi.org/10.1016/j.aml.2020.106648 doi: 10.1016/j.aml.2020.106648
    [6] Z. Diab, J. L. Guirao, J. A. Vera, A Note on the periodic solutions for a class of third order differential equations, Symmetry, 13 (2021), 31. https://doi.org/10.3390/sym13010031 doi: 10.3390/sym13010031
    [7] M. R. Grossinho, F. Minhós, Upper and lower solutions for higher order boundary value problems, Nonlinear Stud., 12 (2005), 165–176.
    [8] C. Fabry, J. Mawhin, M. N. Nkashama, A multiplicity result for periodic solutions of forced nonlinear second order ordinary differential equations, B. Lond. Math. Soc., 18 (1986), 173–180. https://doi.org/10.1112/blms/18.2.173 doi: 10.1112/blms/18.2.173
    [9] G. Feltrin, E. Sovrano, F. Zanolin, Periodic solutions to parameter-dependent equations with a $\varphi $-Laplacian type operator, Nonlinear Differ. Equ. Appl., 26 (2019), 38. https://doi.org/10.1007/s00030-019-0585-3 doi: 10.1007/s00030-019-0585-3
    [10] J. Fialho, F. Minhós, On higher order fully periodic boundary value problems, J. Math. Anal. Appl., 395 (2012) 616–625, https://doi.org/10.1016/j.jmaa.2012.05.061
    [11] S. R. Grace, S. Abbas, M. Sajid, Oscillation of nonlinear even order differential equations with mixed neutral terms, Math. Method. Appl. Sci., 45 (2022), 1063–1071, https://doi.org/10.1002/mma.7834 doi: 10.1002/mma.7834
    [12] Y. Li, Positive periodic solutions for fully third-order ordinary differential equations, Comput. Math. Appl., 59 (2010), 3464–3471. https://doi.org/10.1016/j.camwa.2010.03.035 doi: 10.1016/j.camwa.2010.03.035
    [13] F. Minhós, On some third order nonlinear boundary value problems: Existence, location and multiplicity results, J. Math. Anal. Appl., 339 (2008), 1342–1353. https://doi.org/10.1016/j.jmaa.2007.08.005 doi: 10.1016/j.jmaa.2007.08.005
    [14] F. Minhós, N. Oliveira, Periodic third-order problems with a parameter, Axioms, 10 (2021), 222. https://doi.org/10.3390/axioms10030222 doi: 10.3390/axioms10030222
    [15] F. Minhós, N. Oliveira, Bifurcation results for periodic third-order Ambrosetti-Prodi-type problems, Axioms, 11 (2022), 387. https://doi.org/10.3390/axioms11080387 doi: 10.3390/axioms11080387
    [16] J. Mawhin, The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian, J. Eur. Math. Soc., 8 (2006), 375–388. https://doi.org/10.4171/JEMS/58 doi: 10.4171/JEMS/58
    [17] F. Obersnel, P. Omari, On the periodic Ambrosetti-Prodi problem for a class of ODEs with nonlinearities indefinite in sign, Appl. Math. Lett., 111 (2021), 106622, https://doi.org/10.1016/j.aml.2020.106622 doi: 10.1016/j.aml.2020.106622
    [18] N. S. Papageorgiou, V. D. Rădulescu, J. Zhang, Ambrosetti-Prodi problems for the Robin $(p, q)$-Laplacian, Nonlinear Anal. Real, 67 (2022), 103640. https://doi.org/10.1016/j.nonrwa.2022.103640 doi: 10.1016/j.nonrwa.2022.103640
    [19] E. Sovrano, Ambrosetti-Prodi type result to a Neumann problem via a topological approach. Discrete Cont. Dyn. S, 11 (2018), 345–355. https://doi.org/10.3934/dcdss.2018019
    [20] M. Senkyrik, Existence of multiple solutions for a third order three-point regular boundary value problem, Math. Bohem., 119 (1994), 113–121. https://doi.org/10.21136/MB.1994.126080 doi: 10.21136/MB.1994.126080
    [21] C. Tunç, On existence of periodic solutions to certain nonlinear third order differential equations, Proyecciones J. Math., 28 (2009), 125–132. http://dx.doi.org/10.4067/S0716-09172009000200002 doi: 10.4067/S0716-09172009000200002
    [22] Z. Wang, Y. Mo, Bifurcation from infinity and multiple solutions of third order periodic boundary value problems, Appl. Math. E-Notes, 12 (2012), 118–128.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1019) PDF downloads(96) Cited by(2)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog