Research article

Oscillation results for a nonlinear fractional differential equation

  • Received: 04 January 2023 Revised: 10 February 2023 Accepted: 20 February 2023 Published: 27 March 2023
  • MSC : 26A33, 4K37

  • In this paper, the authors work with a general formulation of the fractional derivative of Caputo type. They study oscillatory solutions of differential equations involving these general fractional derivatives. In particular, they extend the Kamenev-type oscillation criterion given by Baleanu et al. in 2015. In addition, we prove results on the existence and uniqueness of solutions for many of the equations considered. Also, they complete their study with some examples.

    Citation: Paul Bosch, José M. Rodríguez, José M. Sigarreta. Oscillation results for a nonlinear fractional differential equation[J]. AIMS Mathematics, 2023, 8(5): 12486-12505. doi: 10.3934/math.2023627

    Related Papers:

  • In this paper, the authors work with a general formulation of the fractional derivative of Caputo type. They study oscillatory solutions of differential equations involving these general fractional derivatives. In particular, they extend the Kamenev-type oscillation criterion given by Baleanu et al. in 2015. In addition, we prove results on the existence and uniqueness of solutions for many of the equations considered. Also, they complete their study with some examples.



    加载中


    [1] K. Oldham, J. Spanier, Applications of differentiation and integration to arbitrary order, Amsterdam: Elsevier, 1974.
    [2] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A
    [3] D. Baleanu, A. Fernandez, On fractional operators and their classifications, Mathematics, 7 (2019), 830. https://doi.org/10.3390/math7090830 doi: 10.3390/math7090830
    [4] L. L. Huang, D. Baleanu, G. C. Wu, S. H. Zeng, A new application of the fractional logistic map, Rom. J. Phys., 61 (2016), 1172–1179.
    [5] D. Kumar, J. Singh, M. Al Qurashi, D. Baleanu, Analysis of logistic equation pertaining to a new fractional derivative with non-singular kernel, Adv. Mechan. Eng., 9 (2017), 1–8. https://doi.org/10.1177/1687814017690069
    [6] A. Atangana, E. Goufo, Extension of matched asymptotic method to fractional boundary layers problems, Math. Probl. Eng., 2014 (2014), 107535. http://dx.doi.org10.1155/2014/107535
    [7] A. Atangana, D. Baleanu, A. Alsaedi, New properties of conformable derivative, Open Math., 13 (2015), 889–898. https://doi.org/10.1515/math-2015-0081 doi: 10.1515/math-2015-0081
    [8] A. Fernandez, M. özarslan, D. Baleanu, On fractional calculus with general analytic kernels, Appl. Math. Comput., 354 (2019), 248–265. https://doi.org/10.1016/j.amc.2019.02.045
    [9] R. Abreu Blaya, R. Ávila, J. Bory Reyes, Boundary value problems with higher order Lipschitz boundary data for polymonogenic functions in fractal domains, Appl. Math. Comput., 269 (2015), 802–808. https://doi.org/10.1016/j.amc.2015.08.012
    [10] B. Shiri, D. Baleanu, System of fractional differential algebraic equations with applications, Chaos Solit. Fract., 120 (2019), 203–212. https://doi.org/10.1016/j.chaos.2019.01.028
    [11] D. Baleanu, O. G. Mustafa, D. O'Regan, A Kamenev-type oscillation result for a linear ($1+\alpha$)-order fractional differential equation, Appl. Math. Comput., 259 (2015), 374–378. https://doi.org/10.1016/j.amc.2015.02.045
    [12] M. Caputo, Linear model of dissipation whose Q is almost frequency independent II, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x
    [13] M. Caputo, Elasticità e dissipazione, Bologna: Zanichelli, 1969.
    [14] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Singapure: Worls Scientific Publishing, 2017.
    [15] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. http://dx.doi.org/10.12785/pfda/010201
    [16] J. W. He, Y. Zhou, Holder regularity for non-autonomous fractional evolution equations, Fract. Calc. Appl. Anal., 25 (2022), 378–407. https://doi.org/10.1007/s13540-022-00019-1 doi: 10.1007/s13540-022-00019-1
    [17] Y. Zhou, J. W. He, A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval, Fract. Calc. Appl. Anal., 25 (2022), 924–961. https://doi.org/10.1007/s13540-022-00057-9 doi: 10.1007/s13540-022-00057-9
    [18] M. Zhou, C. Li, Y. Zhou, Existence of mild solutions for Hilfer fractional evolution equations with almost sectorial operators, Axioms, 11 (2022), 144. https://doi.org/10.3390/axioms11040144 doi: 10.3390/axioms11040144
    [19] P. Bosch, H. Carmenate, J. M. Rodríguez, J. M. Sigarreta, On the generalized Laplace transform, Symmetry, 13 (2021), 669. https://doi.org/10.3390/sym13040669 doi: 10.3390/sym13040669
    [20] P. Bosch, H. Carmenate, J. M. Rodríguez, J. M. Sigarreta, Generalized inequalities involving fractional operators of Riemann-Liouville type, AIMS Math., 7 (2022), 1470–1485. https://doi.org/10.3934/math.2022087 doi: 10.3934/math.2022087
    [21] A. A. Andronov, A. A. Vitt, S. Khajkin, Theory of oscillations, Berlin: Springer Cham, 1966. https://doi.org/10.1007/978-3-030-31295-4
    [22] I. V. Kamenev, An integral criterion for oscillation of linear differential equations of second order, Math. Notes. Acad. Sci. USSR, 23 (1978), 136–138. https://doi.org/10.1007/BF01153154 doi: 10.1007/BF01153154
    [23] S. R. Grace, On the asymptotic behavior of positive solutions of certain fractional differential equations, Math. Probl. Eng., 2015 (2015), 945347. http://dx.doi.org/10.1155/2015/945347
    [24] S. R. Grace, A. Zafer, On the asymptotic behavior of nonoscillatory solutions of certain fractional differential equations, Eur. Phys. J. Spec. Top., 226 (2018), 3657–3665. https://doi.org/10.1007/s00009-018-1120-1 doi: 10.1007/s00009-018-1120-1
    [25] W. Sudsutad, J. Alzabut, C. Tearnbucha, C. Thaiprayoon, On the oscillation of differential equations in frame of generalized proportional fractional derivatives, AIMS Math., 5 (2020), 856–871. https://doi.org/10.3934/math.2020058 doi: 10.3934/math.2020058
    [26] J. Shao, Z. Zheng, Kamenev type oscillatory criteria for linear conformable fractional differential equations, Discr. Dynam. Nature Soc., 2019 (2019), 2310185. https://doi.org/10.1155/2019/2310185 doi: 10.1155/2019/2310185
    [27] P. Zhu, Q. Xiang, Oscillation criteria for a class of fractional delay differential equations, Adv. Differ. Eq., 2018 (2018), 403. https://doi.org/10.1186/s13662-018-1813-6 doi: 10.1186/s13662-018-1813-6
    [28] R. Xu, Oscillation criteria for nonlinear fractional differential equations, J. Appl. Math., 2013 (2013), 971357. http://dx.doi.org/10.1155/2013/971357 doi: 10.1155/2013/971357
    [29] J. Alzabut, R. P. Agarwal, S. R. Grace, J. M. Jonnalagadda, Oscillation results for solutions of fractional-order differential equations, Fractal Fract., 2022 (2022), 466. https://doi.org/10.3390/fractalfract6090466 doi: 10.3390/fractalfract6090466
    [30] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Holland: North-Holland Mathematics Studies, 2006.
    [31] R. Garrappa, Numerical solution of fractional differential equations: survey and a software tutorial, Mathematics, 6 (2018), 16. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1020) PDF downloads(88) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog