Research article

Hyperbolic inequalities with a Hardy potential singular on the boundary of an annulus

  • Received: 30 October 2022 Revised: 28 February 2023 Accepted: 02 March 2023 Published: 16 March 2023
  • MSC : 35L70, 35A01, 35B44, 35B33

  • We are concerned with the study of existence and nonexistence of weak solutions for a class of hyperbolic inequalities with a Hardy potential singular on the boundary $ \partial B_1 $ of the annulus $ A = \left\{x\in \mathbb{R}^3: 1 < |x|\leq 2\right\} $, where $ \partial B_1 = \left\{x\in \mathbb{R}^3: |x| = 1\right\} $. A singular potential function of the form $ (|x|-1)^{-\rho} $, $ \rho\geq 0 $, is considered in front of the power nonlinearity. Two types of inhomogeneous boundary conditions on $ (0, \infty)\times \partial B_2 $, $ \partial B_2 = \left\{x\in \mathbb{R}^3: |x| = 2\right\} $, are studied: Dirichlet and Neumann. We use a unified approach to show the optimal criteria of Fujita-type for each case.

    Citation: Ibtehal Alazman, Ibtisam Aldawish, Mohamed Jleli, Bessem Samet. Hyperbolic inequalities with a Hardy potential singular on the boundary of an annulus[J]. AIMS Mathematics, 2023, 8(5): 11629-11650. doi: 10.3934/math.2023589

    Related Papers:

  • We are concerned with the study of existence and nonexistence of weak solutions for a class of hyperbolic inequalities with a Hardy potential singular on the boundary $ \partial B_1 $ of the annulus $ A = \left\{x\in \mathbb{R}^3: 1 < |x|\leq 2\right\} $, where $ \partial B_1 = \left\{x\in \mathbb{R}^3: |x| = 1\right\} $. A singular potential function of the form $ (|x|-1)^{-\rho} $, $ \rho\geq 0 $, is considered in front of the power nonlinearity. Two types of inhomogeneous boundary conditions on $ (0, \infty)\times \partial B_2 $, $ \partial B_2 = \left\{x\in \mathbb{R}^3: |x| = 2\right\} $, are studied: Dirichlet and Neumann. We use a unified approach to show the optimal criteria of Fujita-type for each case.



    加载中


    [1] M. Marcus, V. J. Mizel, Y. Pinchover, On the best constant for Hardy's inequality in $\mathbb{R}^n$, T. Am. Math. Soc., 350 (1998), 3237–3255. https://doi.org/10.1090/S0002-9947-98-02122-9 doi: 10.1090/S0002-9947-98-02122-9
    [2] V. Georgiev, H. Lindblad, C. D. Sogge, Weighted Strichartz estimates and global existence for semilinear wave equations, Amer. J. Math., 119 (1997), 1291–1319.
    [3] R. T. Glassey, Finite-time blow up for solutions of nonlinear wave equations, Math. Z., 177 (1981), 323–340. https://doi.org/10.1007/BF01162066 doi: 10.1007/BF01162066
    [4] R. T. Glassey, Existence in the large for $\Delta u = F(u)$ in two space dimensions, Math. Z., 178 (1981), 233–261. https://doi.org/10.1007/BF01262042 doi: 10.1007/BF01262042
    [5] F. John, Blow-up of solutions of nonlinear wave equations in three space dimensions, Manuscripta Math., 28 (1979), 235–268. https://doi.org/10.1007/BF01647974 doi: 10.1007/BF01647974
    [6] J. Schaeffer, The equation $u_tt-\Delta u = |u|^p$ for the critical value of $p$, P. Roy. Soc. Edinb. A, 101A (1985), 31–44. https://doi.org/10.1017/S0308210500026135 doi: 10.1017/S0308210500026135
    [7] T. C. Sideris, Nonexistence of global solutions to semilinear wave equations in high dimensions, J. Differ. Equ., 52 (1984), 378–406. https://doi.org/10.1016/0022-0396(84)90169-4 doi: 10.1016/0022-0396(84)90169-4
    [8] W. A. Strauss, Nonlinear scattering theory at low energy, J. Funct. Anal., 41 (1981), 110–133. https://doi.org/10.1016/0022-1236(81)90063-X doi: 10.1016/0022-1236(81)90063-X
    [9] B. Yordanov, Q. Zhang, Finite time blow up for critical wave equations in high dimensions, J. Funct. Anal., 231 (2006), 361–374. https://doi.org/10.1016/j.jfa.2005.03.012 doi: 10.1016/j.jfa.2005.03.012
    [10] Y. Zhou, Blow-up of solutions to semilinear wave equations with critical exponent in high dimensions, Chin. Ann. Math., 28B (2007), 205–212. https://doi.org/10.1007/s11401-005-0205-x doi: 10.1007/s11401-005-0205-x
    [11] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Commun. Pur. Appl. Math., 33 (1980), 501–505. https://doi.org/10.1002/cpa.3160330403 doi: 10.1002/cpa.3160330403
    [12] S. I. Pohozaev, L. Véron, Blow-up results for nonlinear hyperbolic inequalities, Ann. Scuola Norm.-Sci., 29 (2000), 393–420.
    [13] A. E. Hamidi, G. G. Laptev, Existence and nonexistence results for higher-order semilinear evolution inequalities with critical potential, J. Math. Anal. Appl., 304 (2005), 451–463. https://doi.org/10.1016/j.jmaa.2004.09.019 doi: 10.1016/j.jmaa.2004.09.019
    [14] R. Filippucci, M. Ghergu, Higher order evolution inequalities with nonlinear convolution terms, Nonlinear Anal., 221 (2022), 112881. https://doi.org/10.1016/j.na.2022.112881 doi: 10.1016/j.na.2022.112881
    [15] M. Guedda, Local and global nonexistence of solutions to nonlinear hyperbolic inequalities, Appl. Math. Lett., 16 (2003), 493–499. https://doi.org/10.1016/S0893-9659(03)00026-0 doi: 10.1016/S0893-9659(03)00026-0
    [16] M. Jleli, B. Samet, New blow-up phenomena for hyperbolic inequalities with combined nonlinearities, J. Math. Anal. Appl., 494 (2021), 124444. https://doi.org/10.1016/j.jmaa.2020.124444 doi: 10.1016/j.jmaa.2020.124444
    [17] E. Mitidieri, S. I. Pohozaev, Nonexistence of weak solutions for some degenerate and singular hyperbolic problems on $\mathbb{R}^N$, Proc. Steklov Inst. Math., 232 (2001), 1–19.
    [18] S. Xiao, Z. B. Fang, Nonexistence of solutions for quasilinear hyperbolic inequalities, J. Inequal. Appl., 2021 (2021), 151. https://doi.org/10.1186/s13660-021-02685-w doi: 10.1186/s13660-021-02685-w
    [19] M. Jleli, B. Samet, C. Vetro, A blow-up result for a nonlinear wave equation on manifolds: The critical case, Appl. Anal., 2021, 1–10. https://doi.org/10.1080/00036811.2021.1986026 doi: 10.1080/00036811.2021.1986026
    [20] M. Jleli, B. Samet, C. Vetro, Nonexistence of solutions to higher order evolution inequalities with nonlocal source term on Riemannian manifolds, Complex Var. Elliptic, 2022, 1–18. https://doi.org/10.1080/17476933.2022.2061474 doi: 10.1080/17476933.2022.2061474
    [21] D. D. Monticelli, F. Punzo, M. Squassina, Nonexistence for hyperbolic problems on Riemannian manifolds, Asymptot. Anal., 120 (2020), 87–101.
    [22] M. Jleli, B. Samet, C. Vetro, On the critical behavior for inhomogeneous wave inequalities with Hardy potential in an exterior domain, Adv. Nonlinear Anal., 10 (2021), 1267–1283. https://doi.org/10.1515/anona-2020-0181 doi: 10.1515/anona-2020-0181
    [23] M. Jleli, B. Samet, New blow-up results for nonlinear boundary value problems in exterior domains, Nonlinear Anal., 178 (2019), 348–365. https://doi.org/10.1016/j.na.2018.09.003 doi: 10.1016/j.na.2018.09.003
    [24] M. Jleli, B. Samet, D. Ye, Critical criteria of Fujita type for a system of inhomogeneous wave inequalities in exterior domains, J. Differ. Equations, 268 (2020), 3035–3056. https://doi.org/10.1016/j.jde.2019.09.051 doi: 10.1016/j.jde.2019.09.051
    [25] Y. Sun, The absence of global positive solutions to semilinear parabolic differential inequalities in exterior domain, P. Am. Math. Soc., 145 (2017), 3455–3464. http://dx.doi.org/10.1090/proc/13472 doi: 10.1090/proc/13472
    [26] Y. Sun, Nonexistence results for systems of elliptic and parabolic differential inequalities in exterior domains of $\mathbb{R}^N$, Pac. J. Math., 293 (2018), 245–256.
    [27] Q. Zhang, A general blow-up result on nonlinear boundary-value problems on exterior domains, P. Roy. Soc. Edinb. A, 131A (2001), 451–475. https://doi.org/10.1017/S0308210500000950 doi: 10.1017/S0308210500000950
    [28] M. Jleli, B. Samet, Nonexistence for nonlinear hyperbolic inequalities in an annulus, Anal. Math. Phys., 12 (2022), 1–18. https://doi.org/10.1007/s13324-022-00700-x doi: 10.1007/s13324-022-00700-x
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1126) PDF downloads(42) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog