Research article Special Issues

Semi-stable quiver bundles over Gauduchon manifolds

  • Received: 21 December 2022 Revised: 06 March 2023 Accepted: 09 March 2023 Published: 15 March 2023
  • MSC : 53C07, 53C25

  • In this paper, we prove the existence of the approximate $ (\sigma, \tau) $-Hermitian Yang-Mills structure on the $ (\sigma, \tau) $-semi-stable quiver bundle $ \mathcal{R} = (\mathcal{E}, \phi) $ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly $ L^{2}_1 $-subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].

    Citation: Dan-Ni Chen, Jing Cheng, Xiao Shen, Pan Zhang. Semi-stable quiver bundles over Gauduchon manifolds[J]. AIMS Mathematics, 2023, 8(5): 11546-11556. doi: 10.3934/math.2023584

    Related Papers:

  • In this paper, we prove the existence of the approximate $ (\sigma, \tau) $-Hermitian Yang-Mills structure on the $ (\sigma, \tau) $-semi-stable quiver bundle $ \mathcal{R} = (\mathcal{E}, \phi) $ over compact Gauduchon manifolds. An interesting aspect of this work is that the argument on the weakly $ L^{2}_1 $-subbundles is different from [Álvarez-Cónsul and García-Prada, Comm. Math. Phys., 2003] and [Hu-Huang, J. Geom. Anal., 2020].



    加载中


    [1] L. Álvarez-Cónsul, O. García-Prada, Hitchin-Kobayashi correspondence, quivers, and vortices, Commun. Math. Phys., 238 (2003), 1–33. https://doi.org/10.1007/s00220-003-0853-1 doi: 10.1007/s00220-003-0853-1
    [2] I. Biswas, H. Kasuya, Higgs bundles and flat connections over compact Sasakian manifolds, Commun. Math. Phys., 385 (2021), 267–290. https://doi.org/10.1007/s00220-021-04056-4 doi: 10.1007/s00220-021-04056-4
    [3] U. Bruzzo, B. G. Otero, Metrics on semistable and numerically effective Higgs bundles, J. Reine Angew. Math., 2007 (2007), 59–79. https://doi.org/10.1515/CRELLE.2007.084 doi: 10.1515/CRELLE.2007.084
    [4] X. Chen, R. Wentworth, A Donaldson-Uhlenbeck-Yau theorem for normal varieties and semistable bundles on degenerating families, Math. Ann., 2023 (2023). https://doi.org/10.1007/s00208-023-02565-2
    [5] S. K. Donaldson, Anti self-dual Yang-Mills connections over complex algebraic surfaces and stable vector bundles, P. Lond. Math. Soc., s3-50 (1985), 1–26. https://doi.org/10.1112/plms/s3-50.1.1 doi: 10.1112/plms/s3-50.1.1
    [6] Z. Hu, P. Huang, The Hitchin-Kobayashi correspondence for quiver bundles over generalized Kähler manifolds, J. Geom. Anal., 30 (2020), 3641–3671. https://doi.org/10.1007/s12220-019-00210-6 doi: 10.1007/s12220-019-00210-6
    [7] S. Kobayashi, Differential geometry of complex vector bundles, Japan: Mathematical Society, 1987.
    [8] C. Li, C. Zhang, X. Zhang, Mean curvature negativity and HN-negativity of holomorphic vector bundles, 2021, arXiv: 2112.00488.
    [9] J. Y. Li, X. Zhang, Existence of approximate Hermitian-Einstein structures on semi-stable Higgs bundles, Calc. Var., 52 (2015), 783–795. https://doi.org/10.1007/s00526-014-0733-x doi: 10.1007/s00526-014-0733-x
    [10] M. Lübke, A. Teleman, The Kobayashi-Hitchin correspondence, World Scientific, 1995.
    [11] T. Mochizuki, Wild harmonic bundles and wild pure twistor $\mathcal{D}$-modules, Astérisque, 340 (2011).
    [12] Y. Nie, X. Zhang, Semistable Higgs bundles over compact Gauduchon manifolds, J. Geom. Anal., 28 (2018), 627–642. https://doi.org/10.1007/s12220-017-9835-y doi: 10.1007/s12220-017-9835-y
    [13] W. Ou, Admissible metrics on compact Kähler varieties, 2022, arXiv: 2201.04821.
    [14] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Amer. Math. Soc., 1 (1988), 867–918. https://doi.org/10.2307/1990994 doi: 10.2307/1990994
    [15] K. Uhlenbeck, S. T. Yau, On the existence of Hermitian-Yang-Mills connections in stable vector bundles, Commun. Pur. Appl. Math., 39 (1986), S257–S293. https://doi.org/10.1002/cpa.3160390714 doi: 10.1002/cpa.3160390714
    [16] D. Wu, X. Zhang, Higgs bundles over foliation manifolds, Sci. China Math., 64 (2021), 399–420. https://doi.org/10.1007/s11425-019-1736-4 doi: 10.1007/s11425-019-1736-4
    [17] C. Zhang, P. Zhang, X. Zhang, Higgs bundles over non-compact Gauduchon manifolds, Trans. Amer. Math. Soc., 374 (2021), 3735–3759. https://doi.org/10.1090/tran/8323 doi: 10.1090/tran/8323
    [18] P. Zhang, Semi-stable holomorphic vector bundles over generalized Kähler manifolds, Complex Var. Elliptic, 67 (2022), 1481–1495. https://doi.org/10.1080/17476933.2021.1882436 doi: 10.1080/17476933.2021.1882436
    [19] W. Zhang, Lectures on Chern-Weil theory and Witten deformations, World Scientific, 2001.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1084) PDF downloads(54) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog