Research article

Large time behavior of the Euler-Poisson system coupled to a magnetic field

  • Received: 27 January 2023 Revised: 03 March 2023 Accepted: 07 March 2023 Published: 14 March 2023
  • MSC : 35B35, 35B40, 35M10

  • In this paper, the large time behavior of globally smooth solutions of the Cauchy problem for the three dimensional Euler-Poisson system of compressible fluids coupled to a magnetic field is studied. We prove that the smooth solutions (near a given constant equilibrium state) of the problem converge asymptotically to a stationary solution exponentially fast as $ t $ goes to $ \infty $.

    Citation: Yingying Chen, Lan Huang, Jianwei Yang. Large time behavior of the Euler-Poisson system coupled to a magnetic field[J]. AIMS Mathematics, 2023, 8(5): 11460-11479. doi: 10.3934/math.2023580

    Related Papers:

  • In this paper, the large time behavior of globally smooth solutions of the Cauchy problem for the three dimensional Euler-Poisson system of compressible fluids coupled to a magnetic field is studied. We prove that the smooth solutions (near a given constant equilibrium state) of the problem converge asymptotically to a stationary solution exponentially fast as $ t $ goes to $ \infty $.



    加载中


    [1] P. Federbush, T. Luo, J. Smoller, Existence of magnetic compressible fluid stars, Arch. Rational Mech. Anal., 215 (2015), 611–631. http://doi.org/10.1007/s00205-014-0790-5 doi: 10.1007/s00205-014-0790-5
    [2] S. L. Shapiro, S. A. Teukolsky, Black holes, white dwarfs, and neutron stars: the physics of compact objects, Phys. Today, 36 (1983), 89. http://doi.org/10.1063/1.2915325 doi: 10.1063/1.2915325
    [3] R. Natalini, T. Luo, Z. P. Xin, Large-time behavior of the solutions to a hydrodynamic model for semiconductors, SIAM J. Appl. Math., 59 (1998), 810–830. https://doi.org/10.1137/S0036139996312168 doi: 10.1137/S0036139996312168
    [4] L. Hsiao, T. Yang, Asymptotics of initial boundary value problems for hydrodynamic and drift diffusion models for semiconductors, J. Differ. Equations, 170 (2001), 472–493. https://doi.org/10.1006/jdeq.2000.3825 doi: 10.1006/jdeq.2000.3825
    [5] L. Hsiao, S. Wang, The asymptotic behavior of global smooth solutions to the hydrodynamic model for semiconductors with spherical symmetry, Nonlinear Analysis: Theory, Methods Applications, 52 (2003), 827–850. https://doi.org/10.1016/S0362-546X(02)00135-9 doi: 10.1016/S0362-546X(02)00135-9
    [6] L. Hsiao, P. Markowich, S. Wang, The asymptotic behavior of global smooth solutions to the multidimensional hydrodynamic model for semiconductors, J. Differ. Equations, 192 (2003) 111–133. https://doi.org/10.1016/S0022-0396(03)00063-9 doi: 10.1016/S0022-0396(03)00063-9
    [7] L. Hsiao, S. Wang, H. J. Zhao, Asymptotic of global solutions to the multi-dimensional hydrodynamic model for semiconductors, Math. Method. Appl. Sci., 25 (2002), 663–700. https://doi.org/10.1002/mma.307 doi: 10.1002/mma.307
    [8] L. Hsiao, Q. C. Ju, S. Wang, The asymptotic behaviour of global smooth solutions to the multi-dimensional hydrodynamic model for semiconductors, Math. Method. Appl. Sci., 26 (2003), 1187–1210. https://doi.org/10.1002/mma.410 doi: 10.1002/mma.410
    [9] Y. Wu, Z. Tan, Y. J. Wang, Long-time behavior of solutions to the non-isentropic Euler-Poisson system in $R^3$, Commun. Math. Sci., 15 (2017), 1947–1965. https://doi.org/10.4310/CMS.2017.v15.n7.a8 doi: 10.4310/CMS.2017.v15.n7.a8
    [10] D. F. Bian, B. L. Guo, Global existence and large time behavior of solutions to the electric-magnetohydrodynamic equations, Kinet. Relat. Mod., 6 (2013), 481–503. https://doi.org/10.3934/krm.2013.6.481 doi: 10.3934/krm.2013.6.481
    [11] Y. Chen, F. C. Li, Z. P. Zhang, Large time behavior of the isentropic compressible Navier-Stokes-Maxwell system, Z. Angew. Math. Phys., 67 (2016), 91. https://doi.org/10.1007/s00033-016-0685-4 doi: 10.1007/s00033-016-0685-4
    [12] M. Chen, O. Goubet, Long-time asymptotic behavior of dissipative boussinesq system, Discrete Cont. Dyn-A, 17 (2007), 509–528. https://doi.org/10.3934/DCDS.2007.17.509 doi: 10.3934/DCDS.2007.17.509
    [13] H. Li, A. Matsumura, G. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathcal{R}^3$, Arch. Rational Mech. Anal., 196 (2010), 681–713. https://doi.org/10.1007/s00205-009-0255-4 doi: 10.1007/s00205-009-0255-4
    [14] Y. P. Li, Global existence and optimal decay rate of the compressible Navier-Stokes-Korteweg equations with external force, J. Math. Anal. Appl., 388 (2012), 1218–1232. https://doi.org/10.1016/j.jmaa.2011.11.006 doi: 10.1016/j.jmaa.2011.11.006
    [15] Z. Tan, Y. Wang, Large-time behavior of solutions to the compressible non-isentropic Euler-Maxwell system in $\mathcal{R}^3$, Nonlinear Analysis: Real World Applications, 15 (2014), 187–204. https://doi.org/10.1016/j.nonrwa.2013.07.004 doi: 10.1016/j.nonrwa.2013.07.004
    [16] J. W. Yang, Quansi-neutral limit of Euler-Poisson system of compressible fluids coupled to a magnetic field, Z. Angew. Math. Phys., 69 (2018), 73. https://doi.org/10.1007/s00033-018-0957-2 doi: 10.1007/s00033-018-0957-2
    [17] F. Chen, Introduction to plasma physics and controlled fusion, New York: Plenum Press, 1984. http://doi.org/10.1007/978-1-4757-5595-4
    [18] L. Hsiao, T. Luo, Nonlinear diffusive phenomena of solutions for the system of compressible adiabatic flow through porous media, J. Differ. Equations, 125 (1996), 329–365. https://doi.org/10.1006/jdeq.1996.0034 doi: 10.1006/jdeq.1996.0034
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1111) PDF downloads(55) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog