Research article Special Issues

New applications of various distance techniques to multi-criteria decision-making challenges for ranking vague sets

  • Received: 04 January 2023 Revised: 20 February 2023 Accepted: 23 February 2023 Published: 13 March 2023
  • MSC : 03B52, 06D72, 90B50

  • Using the Fermatean vague normal set (FVNS), problems requiring multiple attribute decision making (MADM) have been resolved in this article. This article focuses on the log Fermatean vague normal weighted averaging (log FVNWA), logarithmic Fermatean vague normal weighted geometric (log FVNWG), log generalized Fermatean vague normal weighted averaging (log GFVNWA) and log generalized Fermatean vague normal weighted geometric (log GFVNWG) operators. Described the scoring function, accuracy function and operational laws of the log FVNS. The Euclidean and Humming distance are extended with numerical examples. The features of the log FVNS based on the algebraic operations, including idempotency, boundedness, commutativity and monotonicity are also examined. A field of applied engineering called agricultural robotics has been compared to computer science and machine tool technology. Five distinct agricultural robotics including autonomous mobile robots, articulated robots, humanoid robots, cobot robots, and hybrid robots are randomly chosen. Findings can be compared to established criteria to determine which robotics are the most successful. The results of the models are expressed as a natural number $ \alpha $. We contrast several existing with those that have been developed in order to show the effectiveness and accuracy of the models.

    Citation: Murugan Palanikumar, Nasreen Kausar, Shams Forruque Ahmed, Seyyed Ahmad Edalatpanah, Ebru Ozbilge, Alper Bulut. New applications of various distance techniques to multi-criteria decision-making challenges for ranking vague sets[J]. AIMS Mathematics, 2023, 8(5): 11397-11424. doi: 10.3934/math.2023577

    Related Papers:

  • Using the Fermatean vague normal set (FVNS), problems requiring multiple attribute decision making (MADM) have been resolved in this article. This article focuses on the log Fermatean vague normal weighted averaging (log FVNWA), logarithmic Fermatean vague normal weighted geometric (log FVNWG), log generalized Fermatean vague normal weighted averaging (log GFVNWA) and log generalized Fermatean vague normal weighted geometric (log GFVNWG) operators. Described the scoring function, accuracy function and operational laws of the log FVNS. The Euclidean and Humming distance are extended with numerical examples. The features of the log FVNS based on the algebraic operations, including idempotency, boundedness, commutativity and monotonicity are also examined. A field of applied engineering called agricultural robotics has been compared to computer science and machine tool technology. Five distinct agricultural robotics including autonomous mobile robots, articulated robots, humanoid robots, cobot robots, and hybrid robots are randomly chosen. Findings can be compared to established criteria to determine which robotics are the most successful. The results of the models are expressed as a natural number $ \alpha $. We contrast several existing with those that have been developed in order to show the effectiveness and accuracy of the models.



    加载中


    [1] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [2] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [3] M. B. Gorzalczany, A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy Set Syst., 21 (1987), 1–17. https://doi.org/10.1016/0165-0114(87)90148-5 doi: 10.1016/0165-0114(87)90148-5
    [4] R. Biswas, Vague groups, Int. J. Comput. Cognition, 4 (2006), 20–23.
    [5] R. R. Yager, Pythagorean membership grades in multi criteria decision making, IEEE T. Fuzzy Sys., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [6] X. D. Peng, Y. Yang, Fundamental properties of interval valued Pythagorean fuzzy aggregation operators, Int. J. Intell. Syst., 31 (2015), 444–487. https://doi.org/10.1002/INT.21790 doi: 10.1002/INT.21790
    [7] S. Ashraf, S. Abdullah, T. Mahmood, F. Ghani, T. Mahmood, Spherical fuzzy sets and their applications in multi-attribute decision making problems, J. Intell. Fuzzy Syst., 36 (2019), 2829–2844. https://doi.org/10.3233/JIFS-172009 doi: 10.3233/JIFS-172009
    [8] F. Smarandache, Neutrosophic set-a generalization of the intuitionstic fuzzy set, Int. J. Pure Appl. Math., 24 (2005), 287–297.
    [9] T. Senapati, R. R. Yager, Fermatean fuzzy sets, J. Amb. Intell. Hum. Comp., 11 (2020), 663–674.
    [10] B. C. Cuong, V. Kreinovich, Picture fuzzy sets-A new concept for computational intelligence problems, 2013 Third World Congress on Information and Communication Technologies (WICT 2013), 2013. https://doi.org/10.1109/WICT.2013.7113099
    [11] M. Akram, W. A. Dudek, F. Ilyas, Group decision-making based on Pythagorean fuzzy TOPSIS method, Int. J. Intell. Syst., 34 (2019), 1455–1475. https://doi.org/10.1002/int.22103 doi: 10.1002/int.22103
    [12] M. Akram, W. A. Dudek, J. M. Dar, Pythagorean Dombi fuzzy aggregation operators with application in multicriteria decision-making, Int. J. Intell. Syst., 34 (2019), 3000–3019. https://doi.org/10.1002/int.22183 doi: 10.1002/int.22183
    [13] M. Akram, X. D. Peng, A. N. Al-Kenani, A. Sattar, Prioritized weighted aggregation operators under complex Pythagorean fuzzy information, J. Intell. Fuzzy Syst., 39 (2020), 4763–4783. https://doi.org/10.3233/JIFS-200684 doi: 10.3233/JIFS-200684
    [14] T. M. Athira, S. J. John, H. Garg, Entropy and distance measures of Pythagorean fuzzy soft sets and their applications, J. Intell. Fuzzy Syst., 37 (2019), 4071–4084. https://doi.org/10.3233/JIFS-190217 doi: 10.3233/JIFS-190217
    [15] H. Garg, Some picture fuzzy aggregation operators and their applications to multi criteria decision-making, Arab. J. Sci. Eng., 42 (2017), 5275–5290.
    [16] H. Garg, New logarithmic operational laws and their aggregation operators for Pythagorean fuzzy set and their applications, Int. J. Intell. Syst., 34 (2019), 82–106. https://doi.org/10.1002/int.22043 doi: 10.1002/int.22043
    [17] Z. Xu, Intuitionistic fuzzy aggregation operators, IEEE T. Fuzzy Syst., 15 (2007), 1179–1187. https://doi.org/10.1109/TFUZZ.2006.890678 doi: 10.1109/TFUZZ.2006.890678
    [18] W. F. Liu, J. Chang, X. He, Generalized Pythagorean fuzzy aggregation operators and applications in decision making, Control Decis., 31 (2016), 2280–2286. http://doi.org/10.13195/j.kzyjc.2015.1537 doi: 10.13195/j.kzyjc.2015.1537
    [19] K. Rahman, S. Abdullah, M. Shakeel, M. S. A. Khan, M. Ullah, Interval-valued Pythagorean fuzzy geometric aggregation operators and their application to group decision making problem, Cogent Math., 4 (2017), 1338638. https://doi.org/10.1080/23311835.2017.1338638 doi: 10.1080/23311835.2017.1338638
    [20] K. Rahman, A. Ali, S. Abdullah, F. Amin, Approaches to multi-attribute group decision making based on induced interval valued Pythagorean fuzzy Einstein aggregation operator, New Math. Nat. Comput., 14 (2018), 343–361. http://doi.org/10.1142/S1793005718500217 doi: 10.1142/S1793005718500217
    [21] Z. L. Yang, J. P. Chang, Interval-valued Pythagorean normal fuzzy information aggregation operators for multi-attribute decision making, IEEE Access, 8 (2020), 51295–51314. https://doi.org/10.1109/ACCESS.2020.2978976 doi: 10.1109/ACCESS.2020.2978976
    [22] F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell. Fuzzy Syst., 36, (2019), 337–352. http://doi.org/10.3233/JIFS-181401 doi: 10.3233/JIFS-181401
    [23] P. D. Liu, G. Shahzadi, M. Akram, Specific types of q-Rung picture fuzzy Yager aggregation operators for decision-making, Int. J. Comput. Intell. Syst., 13 (2020), 1072–1091. https://doi.org/10.2991/ijcis.d.200717.001 doi: 10.2991/ijcis.d.200717.001
    [24] H. Bustince, P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Set Syst., 79 (1996), 403–405. https://doi.org/10.1016/0165-0114(95)00154-9 doi: 10.1016/0165-0114(95)00154-9
    [25] A. Kumar, S.P. Yadav, S. Kumar, Fuzzy system reliability analysis using $Tw$ (the weakest $t$‐norm) based arithmetic operations on $L-R$ type interval valued vague sets, Int. J. Qual. Reliab. Manag., 24 (2007), 846–860. https://doi.org/10.1108/02656710710817126 doi: 10.1108/02656710710817126
    [26] J. Wang, S. Y. Liu, J. Zhang, S. Y. Wang, On the parameterized OWA operators for fuzzy MCDM based on vague set theory, Fuzzy Optim. Decis. Mak., 5 (2006), 5–20. http://doi.org/10.1007/s10700-005-4912-2 doi: 10.1007/s10700-005-4912-2
    [27] X. L. Zhang, Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676 doi: 10.1002/int.21676
    [28] C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision-making problem, Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55. https://doi.org/10.4018/IJFSA.2018070103 doi: 10.4018/IJFSA.2018070103
    [29] C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy MABAC approach, Comput. Appl. Math., 40 (2021), 227.
    [30] C. Jana, M. Pal, A Robust single-valued neutrosophic soft aggregation operators in multi-criteria decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110 doi: 10.3390/sym11010110
    [31] C. Jana, M. Pal, J. Q. Wang, A robust aggregation operator for multi-criteria decision making method with bipolar fuzzy soft environment, Iran. J. Fuzzy Syst., 2019.
    [32] C. Jana, T. Senapati, M. Pal, Pythagorean fuzzy Dombi aggregation operators and its applications in multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2019–2038. http://doi.org/10.1002/int.22125 doi: 10.1002/int.22125
    [33] K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2019), 15–27.
    [34] C. Jana, M. Pal, F. Karaaslan, J. Q. Wang, Trapezoidal neutrosophic aggregation operators and their application to the multi-attribute decision-making process, Sci. Iran., 27 (2020), 1655–1673. http://doi.org/10.24200/sci.2018.51136.20 doi: 10.24200/sci.2018.51136.20
    [35] C. Jana, M. Pal, Multi-criteria decision-making process based on some single-valued neutrosophic Dombi power aggregation operators, Soft Comput., 25 (2021), 5055–5072.
    [36] Z.Yang, J.Chang, Interval-valued Pythagorean normal fuzzy information aggregation operators for multi-attribute decision making, IEEE Acess, 8 (2020), 51295–51314. https://doi.org/10.1109/ACCESS.2020.2978976 doi: 10.1109/ACCESS.2020.2978976
    [37] M. S. Yang, C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy Set Syst., 84 (1996), 49–60. https://doi.org/10.1016/0165-0114(95)00308-8 doi: 10.1016/0165-0114(95)00308-8
    [38] Y. Rong, L. Y. Yu, W. Y. Niu, Y. Liu, T. Senapati, A. R. Mishra, MARCOS approach based upon cubic Fermatean fuzzy set and its application in evaluation and selecting cold chain logistics distribution center, Eng. Appl. Artif. Intell., 116 (2022), 105401. https://doi.org/10.1016/j.engappai.2022.105401 doi: 10.1016/j.engappai.2022.105401
    [39] Y. Rong, W. Y. Niu, H. Garg, Y. Liu, L. Y. Yu, A hybrid group decision approach based on MARCOS and regret theory for pharmaceutical enterprises assessment under a single-valued neutrosophic scenario, Systems, 10 (2022), 106. https://doi.org/10.3390/systems10040106 doi: 10.3390/systems10040106
    [40] Y. Jin, S. Ashraf, S. Abdullah, Spherical fuzzy logarithmic aggregation operators based on entropy and their application in decision support systems, Entropy, 21 (2019), 628. https://doi.org/10.3390/e21070628 doi: 10.3390/e21070628
    [41] S. Ashraf, S. Abdullah, F. Smarandache, N. ul Amin, Logarithmic hybrid aggregation operators based on single valued neutrosophic sets and their applications in decision support systems, Symmetry, 11 (2019), 364. https://doi.org/10.3390/sym11030364 doi: 10.3390/sym11030364
    [42] D. Pamucar, I. Badi, K. Sanja, R. Obradovic, A novel approach for the selection of power generation technology using an linguistic neutrosophic combinative distance-based assessment (CODAS) method: A case study in Libya, Energies, 11 (2018), 2489. https://doi.org/10.3390/en11092489 doi: 10.3390/en11092489
    [43] B. Bairagi, A homogeneous group decision making for selection of robotic systems using extended TOPSIS under subjective and objective factors, Decis. Mak. Appl. Manag. Eng., 5 (2022), 300–315. https://doi.org/10.31181/dmame0304052022b doi: 10.31181/dmame0304052022b
    [44] S. Said, H. Bouloiz, M. Gallab, New model for making resilient decisions in an uncertain context: The rational resilience based decision making model (R2DM), Decis. Mak. Appli. Manag. Eng., 6 (2023), 34–57. https://doi.org/10.31181/dmame0601051229022s doi: 10.31181/dmame0601051229022s
    [45] M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using Archimedean aggregation operator in T-spherical fuzzy environment, Rep. Mech. Eng., 4 (2023). https://doi.org/10.31181/rme20031012023k doi: 10.31181/rme20031012023k
    [46] M. Riazand, H. M. A. Farid, Picture fuzzy aggregation approach with application to third-partylogistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236. https://doi.org/10.31181/rme20023062022r doi: 10.31181/rme20023062022r
    [47] D. T. Do, Application of fuca method for multi-criteria decision making in mechanical machining processes, Oper. Res. Eng. Sci. Theory Appl., 5 (2022), 131–152. https://https://doi.org/10.31181/oresta051022061d doi: 10.31181/oresta051022061d
    [48] S. Biswas, G. Bandyopadhyay, D. Pamucar, N. Joshi, A multi-criteria based stock selection frameworkin emerging market, Oper. Res. Eng. Sci. Theory Appl., 2022. https://doi.org/10.31181/oresta161122121b doi: 10.31181/oresta161122121b
    [49] M. K. Hasan, M. Y. Ali, A. Sultana, N. K. Mitra, Some picture fuzzy mean operators and their applications in decision-making, J. Fuzzy. Ext. Appl., 3 (2022), 349–361.
    [50] M. Abbas, M. W. Asghar, Y. H. Guo, Decision-making analysis of minimizing the death rate due to COVID-19 by using q-rung orthopair fuzzy soft bonferroni mean operator, J. Fuzzy Ext. Appl., 3 (2022), 231–248. https://doi.org/10.22105/jfea.2022.335045.1214 doi: 10.22105/jfea.2022.335045.1214
    [51] F. Liu, G. Aiwu, V. Lukovac, M. Vukic, A multicriteria model for the selection of the transport service provider: A single valued neutrosophic DEMATEL multicriteria model, Decis. Mak. Appl. Manag. Eng., 1 (2018), 121–130.
    [52] C. Jana, G. Muhiuddin, M. Pal, Multi-criteria decision making approach based on SVTrN Dombi aggregation functions, Artif. Intell. Rev., 54 (2021), 3685–3723.
    [53] A. K. Adak, G. Kumar, Spherical distance measurement method for solving MCDM problems under Pythagorean fuzzy environment, J. Fuzzy Ext. Appl., 4 (2023), 28–39. https://doi.org/10.22105/jfea.2022.351677.1224 doi: 10.22105/jfea.2022.351677.1224
    [54] M. Palanikumar, K. Arulmozhi, C. Jana, Multiple attribute decision-making approach for Pythagorean neutrosophic normal interval-valued fuzzy aggregation operators, Comput. Appl. Math., 41 (2022), 90.
    [55] X. D. Peng, H. Y. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators, Fund. Inform., 147 (2016), 415–446. https://doi.org/10.3233/FI-2016-1415 doi: 10.3233/FI-2016-1415
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1237) PDF downloads(65) Cited by(12)

Article outline

Figures and Tables

Figures(1)  /  Tables(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog