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1. Introduction

Real world systems are gradually becoming more complex, making it difficult for decision-makers
to identify the optimal solution. Even though deciding between the alternatives is difficult, it is feasible
to select the best option. Many firms; find it challenging to create the opportunity, objectives, and
viewpoint constraints. Therefore, during the decision making (DM) process an individual or a group
must simultaneously consider multiple objectives. Every day, we deal with a wide range of MADM-
related issues. As a result, we must improve our DM abilities. Many researchers have contributed to
this field of study using different methods. In order to deal with the uncertainties, various uncertain
theories have been proposed by them, including the fuzzy set (FS) [1], intuitionistic FS (IFS) [2],
interval valued FS (IVFS) [3], vague set [4], Pythagorean FS (PyFS) [5], IVPyFS [6], spherical FS
(SFS) [7] and neutrosophic FS (NFS) [8]. Membership grade (MG) refers to a fuzzy set having
degrees of belongingness ranging from 0 to 1 in the specified set. Atanassov [2] first presented the
concept of an IFS, which is characterized by the fact that the total of its membership grade (MG) and
non-membership grade (NMG) does not exceed 1. Occasionally, when applying a DM method, we
communicate a single problem scenario in which the sum of the MG and NMG exceeds 1. In order
to generalize IFS, Yager [5] developed the new notion of PyFS, which is characterized by the fact that
the square sum of its MG and NMG is not greater than 1. Senapati et al. [9] proposed the concept
of a Fermatean fuzzy set (FFS). As reported, the cubic sum of the MG and NMG must not be more
than 1. Fermatean fuzzy number is a generalization of Pythagorean fuzzy number and intuitionistic
fuzzy number.

These ideas are inadequate to demonstrate the neutral state (neither favor nor disfavor). The
concept of picture FS was developed by Cuong et al. [10] using three pointers: positive, neutral and
negative with a total grade no more than 1. It provides more benefits than IFS and PyFS for selective
applications [11–17], and hence encourages the use of these sets in the DM method. The concept
of a generalized PyFS with aggregation operator (AO) and its applications was first presented by Liu
et al. [18] PyIVFS with AOs [6, 19–21] has the features where the sum of the truth membership grade
(TMG), indeterminacy membership grade (IMG), and false membership grade (FMG) is greater than 1.
Ashraf et al. [7] suggested the concept of SFS in which the sum of the squares of the TMG, IMG, and
FMG is less than 1. The TOPSIS technique was used by Fatmaa et al. [22] to analyze the idea of
SFS. Different notions of q-Rung picture FS with aggregation operator (AO) for DM were studied by
Liu et al. [23]. The vague set was developed by Gau et al. [4] VS is subjected to the two functions
TMG tv and a FMG fv. Let tv(x) denote TMG of x derived from the evidence for x, and fv(x) denotes
FMG of x derived from the evidence against x. Both of these functions fall within the interval [0, 1],
where their sum does not exceed 1. Extensions of the VS include the IVFS and the FS [24–26]. This
idea of extending PyFS to multi criteria DM (MCDM) using TOPSIS was initially proposed by Zhang
et al. [27]. Applications were studied by Jana et al. [28] to discover how to broaden the bipolar fuzzy
soft set (BFSS). Jana [29] presented a method for DM that works on an extended bipolar FS with
MABAC. Jana et al. [30] also proposed an original method for a robust single valued NS aggregating
operator (AO) using MCDM with BFSS [31]. Jana et al. [32] introduced PyFS with dombi AOs. Ullah
et al. [33], discussed the practical uses of pattern recognition applications for complex PyFS distance
measurement. The AOs based on MADM utilizing a trapezoidal NS method was introduced by Jana
et al. [34] MCDM was discussed utilizing the NS and dombi power AOs [35]. Yang et al. [36] discussed
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interval-valued Pythagorean normal fuzzy information AOs for MADM. Yang et al. [37] discussed the
notion of fuzzy c-numbers clustering procedures for fuzzy informations. Rong et al. [38] discussed
MARCOS approach for cubic Fermatean fuzzy set and its application in evaluation and selecting cold
chain logistics distribution center. Rong et al. [39] discussed the hybrid group decision approach
based on MARCOS and regret theory for pharmaceutical enterprises assessment under a single-valued
neutrosophic scenario.

A logarithmic operation, as a feasible alternative to algebraic operations, can offer results that
are similar to algebraic in terms of smooth estimate quality. In contrast, only limited research has
been conducted on logarithmic operations on IFSs, PyFSs and FFS. By using logarithmic operations
within vague sets (VSs), we develop a method of vague set MADM based on logarithmic aggregation
operators. In 2019, Spherical fuzzy logarithmic AOs based on entropy and their application to DM
were discussed in Yun et al. [40] Logarithmic hybrid AOs for single-valued NSSs were proposed by
Ashraf [41]. Dragan et al. [42] proposed the selecting power generation technologies using combinative
distance-based assessment (CODAS). Recently, many authors discussed new operators such as,
Bairagi [43] use extended topology for integrating subjective and objective factors in homogenous
group DM for selecting robotic systems. The rational resilience DM model was discussed by Said
et al. [44] in an uncertain context. According to Khan et al. [45] MADM is carried out using the
Archimedean AO in T -SFS environments. In Riazand et al. [46], fuzzy AO is employed for the
selection of third-party logistics providers. The MCDM approach using fuca method was discussed
in Do et al. [47]. An emerging market stock selection framework based on MCDM was discussed by
Biswas et al. [48] It was discussed in Hasan et al. [49] what some picture fuzzy mean AOs are and how
they can be applied to DM. In their paper, Abbasth et al. [50] discussed a method of minimizing the
mortality rate due to COVID-19 using a fuzzy soft Bonferroni Mean operator on a q-rung orthopair.
Using neutrosophic information in DM is an important component of many approaches discussed by
Liu et al. [51] The novel logarithmic operational laws and their AOs are discussed by Garg in [15].
Using SVTrN dombi AOs, Jana et al. [52] presented the MCDM approach. The concept of PyIVNNS
with AO was addressed by Palanikumar et al. [54]. Recently, Adak et al. [53] discussed the spherical
distance measurement method for solving MCDM problems based on Pythagorean fuzzy environment.
Hasan [49] interacted the concept for some picture fuzzy mean operators and their applications in
DM. The AO was essential in resolving MADM problems. Averaging and geometric AOs based on
PyFS weighted, ordered weighted, and weighted power cases were also presented by Yager [5]. Later,
Peng et al. [55] discussed a number of basic PyFS features using AOs. Liu et al. [18] established the
generalized PyFS under AOs. We utilized OAs to get log FVNS information. The following Section 2
describes FS and VS information. The definition and various operations of log FVNs are presented in
Section 3. Section 4 discusses ED and HD utilizing log FVNNs. Section 5 connects MADM based on
log FVNN. An application of log FVNS, the insert algorithm, and a numerical example are given in
Section 6. The conclusion is provided in Section 7. Below is a summary of the key aspects made in
conducting this research.

(1) We introduced ED and HD based on log FVNSs.
(2) The log FVNWA, log FVNWG, log GFVNWA, and log GFVNWG operators were our

suggestions.
(3) The MADM technique is explored by using log FVNSs.
(4) To ascertain the various ideal values for log FVNWA, log FVNWG, log GFVNWA and
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log GFVNWG.
(5) Coverage of comparative analyses of the suggested and early investigations.
(6) DM outcomes for natural number α.

2. Basic concepts

The PyFS and VS ideas are discussed in this session.

Definition 2.1. [5] Let U be universal. The PyFS O in U is O =
{
ε,

〈
ζT
O (ε), ζF

O (ε)
〉∣∣∣ε ∈ U

}
,

ζT
O : U → [0, 1] and ζF

O : U → [0, 1] denote the MG and NMG of ε ∈ U to O , respectively and
0 � (ζT

O (ε))2 + (ζF
O (ε))2 � 1. To make things easier, O =

〈
ζT
O , ζ

F
O

〉
is called a Pythagorean fuzzy

number(PyFN).

Definition 2.2. The FFS O in U is O =
{
ε,

〈
ζT
O (ε), ζF

O (ε)
〉∣∣∣ε ∈ U

}
, ζT

O : U → [0, 1] and ζF
O : U →

[0, 1] denote the MG and NMG of ε ∈ U to O , respectively and 0 � (ζT
O (ε))3 + (ζF

O (ε))3 � 1. To make
things easier, O =

〈
ζT
O , ζ

F
O

〉
is called a Fermatean fuzzy number(FFN).

Definition 2.3. [6] The Pythagorean IVFS (PyIVFS) O in U is O =
{
ε,

〈
ζ̃T
O (ε), ζ̃F

O (ε)
〉∣∣∣∣ε ∈ U

}
, where

ζ̃T
O : U → Int([0, 1]) and ζ̃F

O : U → Int([0, 1]) denote the MG and NMG of ε ∈ U to O , respectively,
and 0 � (ζT U

O (ε))2 + (ζFU
O (ε))2 � 1. To make things easier, O =

〈[
ζT L
O , ζT U

O

]
,
[
ζF L
O , ζFU

O

]〉
is called a

PyIVFN.

Definition 2.4. The Fermatean IVFS (FIVFS) O in U is O =
{
ε,

〈
ζ̃T
O (ε), ζ̃F

O (ε)
〉∣∣∣∣ε ∈ U

}
, where

ζ̃T
O : U → Int([0, 1]) and ζ̃F

O : U → Int([0, 1]) denote the MG and NMG of ε ∈ U to O , respectively,
and 0 � (ζT U

O (ε))3 + (ζFU
O (ε))3 � 1. To make things easier, O =

〈[
ζT L
O , ζT U

O

]
,
[
ζF L
O , ζFU

O

]〉
is called a

FIVFN.

Definition 2.5. [4] (i) A VS O in U is a pair (TO ,FO), TO : U → [0, 1],FO : U → [0, 1] are
mappings such that TO(ε)+FO(ε) � 1,∀ε ∈ U , TO and FO are called the truth and false membership
function, respectively. (ii) O(ε) = [TO(ε), 1 −FO(ε)] is called the vague value of ε in O .

Definition 2.6. [4] (i) A VS O is contained in VS O1, O ⊆ O1 if and only if O(ε) � O1(ε). That
is, TO(ε) � TO1(ε) and 1 − FO(ε) � 1 − FO1(ε),∀ε ∈ U . (ii) The union of two VSs O and O1,
as X = O ∪ O1, TX = max{TO ,TO1} and 1 − FX = max{1 − FO , 1 − FO1} = 1 − min{FO ,FO1}.
(iii) The intersection of two VSs O and O1 as X = O ∩ O1, TX = min{TO ,TO1} and 1 − FX =

min{1 −FO , 1 −FO1} = 1 − max{FO ,FO1}.

Definition 2.7. [4] A VS O of a set U ,∀ε ∈ U , then
(i) TO(ε) = 0 and FO(ε) = 1 is called a zero VS of U .
(ii) TO(ε) = 1 and FO(ε) = 0 is called a unit VS of U .

Definition 2.8. [37] The membership function of fuzzy number M(x) = exp−
(x−κ)2

υ2 , (υ > 0) and M =

(κ, υ) is called a normal fuzzy number (NFN), where R is a real numbers.

Definition 2.9. [36] Let L1 = (κ1, υ1) ∈ N and L2 = (κ2, υ2) ∈ N, (υ1, υ2 > 0), then the distance

between L1 and L2 is defined as Ξ(L1, L2) =

√
(κ1 − κ2)2 + 1

2 (υ1 − υ2)2.
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3. Log FVNN and its operations

The log FVNN was defined, along with a few of its important fundamental operations.

Definition 3.1. The log FVS O in U is O =
{
ε,

〈[
log TO(ε), log (1 −FO(ε))

]
,[

log FO(ε), log (1 −TO(ε))
]〉∣∣∣∣ ε ∈ U

}
, ζ̃T

O : U → Int([0, 1]) and ζ̃F
O : U → Int([0, 1])

denote the TMG, IMG and FMG of ε ∈ U to O , respectively and 0 � (log0i
1 −FO(ε))3 +

(log0i
1 −TO(ε))3 � 1, where 0 =

∏
[TO , 1 − FO], [FO , 1 − TO]. To make things easier,

O =
〈[

log TO , log (1 −FO)
]
,
[

log FO , log (1 −TO)
]〉

is called a log FVN.

Definition 3.2. Let (κ, υ) ∈ N, O =
〈
(κ, υ); [log TO , log (1 −FO)], [log FO , log (1 −TO)]

〉
be

a log FVNN, TMG, IMG and FMG are defined as
[
log0i

TO , log0i
(1 −FO)

]
=

[
log0i

TO ·

exp−
(x−κ)3

υ3 , log0i
(1 −FO)· exp−

(x−κ)3

υ3
]
,
[
log0i

FO , log0i
(1 −TO)

]
=

[
1−

(
1−log0i

FO
)
· exp−

(x−κ)3

υ3 , 1−
(
1−

log0i
(1 −TO)

)
· exp−

(x−κ)3

υ3
]

respectively, where x ∈ X is a non-empty set and
[
log TO , log (1 −FO)

]
,[

log FO , log (1 −TO)
]
∈ Int([0, 1]) and 0 �

(
log (1 −FO)(ε)

)α
+

(
log (1 −TO)(ε)

)α
� 2, where

0 =
∏

[TO , 1 −FO], [FO , 1 −TO].

Definition 3.3. Let O =
〈
(κ, υ);

[
log TO , log (1 −FO)

]
,
[

log FO , log (1 −TO)
]〉

be the log FVNN, the

score function of O is S(O) =
κ
2

(
X1
2 +1− Z1

2

)
+ υ

2

(
X2
2 +1− Z2

2

)
2 , where −1 � S(O) � 1. The accuracy function of

O is A(O) =
κ
2

(
X1
2 +1+

Z1
2

)
+ υ

2

(
X2
2 +1+

Z2
2

)
2 , where 0 � A(O) � 1. Where X1 = (log TO)3,Z1 = (log FO)3 and

X2 = (log (1 −FO))3,Z2 = (log (1 −TO))3.

Definition 3.4. Let O =
〈
(κ, υ); [log TO , log (1 −FO)], [log FO , log (1 −TO)]

〉
,

O1 =
〈
(κ1, υ1); [log TO1, log (1 −FO1)], [log FO1, log (1 −TO1)]

〉
and O2 =〈

(κ2, υ2); [log TO2, log (1 −FO2)], [log FO2, log (1 −TO2)]
〉

be the three log FVNNs, α is a real
number and 0 =

∏
[TOi , 1 −FOi], [FOi , 1 −TOi], then

(1) O1 Y O2

=


(κ1 + κ2, υ1 + υ2);

3α
√

(log0i
TO1)3α + (log0i

TO2)3α − (log0i
TO1)3α · (log0i

TO2)3α,

3α
√

(log0i
(1 −FO1))3α + (log0i

(1 −FO2))3α − (log0i
(1 −FO1))3α · (log0i

(1 −FO2))3α

 ,[
log0i

FO1 · log0i
FO2, log0i

(1 −TO1) · log0i
(1 −TO2)

]


,

(2) O1 Z O2

=


(κ1 · κ2, υ1 · υ2);[

log0i
TO1 · log0i

TO2, log0i
(1 −FO1) · log0i

(1 −FO2)
]
,

3α
√

(log0i
FO1)3α + (log0i

FO2)3α − (log0i
FO1)3α · (log0i

FO2)3α,

3α
√

(log0i
(1 −TO1))3α + (log0i

(1 −TO2))3α − (log0i
(1 −TO1))3α · (log0i

(1 −TO2))3α




,
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(3) ∆ · O =


(∆ · κ,∆ · υ);[

3α
√

1 −
(
1 − (log0i

TO)3α)α, 3α
√

1 −
(
1 − (log0i

(1 −FO))3α)α ]
,[

(log0i
FO)α, (log0i

(1 −TO))α
]

 ,
(4) O∆ =

 (κ∆, υ∆);
[
(log0i

TO)α, (log0i
(1 −FO))α

]
,[

3α
√

1 −
(
1 − (log0i

FO)3α)α, 3α
√

1 −
(
1 − (log0i

(1 −TO))3α)α ] .
4. Distance between log FVNNs

We measured ED and HD measurements and examined a number mathematical properties of log
FVNNs.

Definition 4.1. Let O1 =
〈
(κ1, υ1); [log TO1, log (1 −FO1)], [log FO1, log (1 −TO1)]

〉
and O2 =〈

(κ2, υ2); [log TO2, log (1 −FO2)], [log FO2, log (1 −TO2)]
〉

be any two log FVNNs, then ED between
O1 and O2 is

ΞE

(
O1,O2

)
=

1
2

3

√√√√√√√√√√√√√√√√√√√√√
 (log0i

TO1)3+1−(log0i
FO1)3+(log0i

(1−FO1))3+1−(log0i
(1−TO1))3

2 κ1

−
(log0i

TO2)3+1−(log0i
FO2)3+(log0i

(1−FO2))3+1−(log0i
(1−TO2))3

2 κ2


3

+
1
2

 (log0i
TO1)3+1−(log0i

FO1)3+(log0i
(1−FO1))3+1−(log0i

(1−TO1))3

2 υ1

−
(log0i

TO2)3+1−(log0i
FO2)3+(log0i

(1−FO2))3+1−(log0i
(1−TO2))3

2 υ2


3,

and HD between O1 and O2 is defined as

ΞH

(
O1,O2

)
=

1
2



∣∣∣∣∣∣∣∣∣∣∣
(log0i

TO1)3 + 1 − (log0i
FO1)3 + (log0i

(1 −FO1))3 + 1 − (log0i
(1 −TO1))3

2
κ1

−
(log0i

TO2)3 + 1 − (log0i
FO2)3 + (log0i

(1 −FO2))3 + 1 − (log0i
(1 −TO2))3

2
κ2

∣∣∣∣∣∣∣∣∣∣∣
+ 1

2

∣∣∣∣∣∣∣∣∣∣∣
(log0i

TO1)3 + 1 − (log0i
FO1)3 + (log0i

(1 −FO1))3 + 1 − (log0i
(1 −TO1))3

2
υ1

−
(log0i

TO2)3 + 1 − (log0i
FO2)3 + (log0i

(1 −FO2))3 + 1 − (log0i
(1 −TO2))3

2
υ2

∣∣∣∣∣∣∣∣∣∣∣


.

Theorem 4.1. Let O1 =
〈
(κ1, υ1); [log TO1, log (1 −FO1)], [log FO1, log (1 −TO1)]

〉
,

O2 =
〈
(κ2, υ2); [log TO2, log (1 −FO2)], [log FO2, log (1 −TO2)]

〉
and O3 =〈

(κ3, υ3); [log TO3, log (1 −FO3)], [log FO3, log (1 −TO3)]
〉

be any three log FVNNs, then

(1) ΞE(O1,O2) = 0, if and only if O1 = O2.
(2) ΞE(O1,O2)=ΞE(O2,O1).
(3) ΞE(O1,O3) � ΞE(O1,O2) + ΞE(O2,O3).
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Proof. The proof of (1) and (2) is clear. We only provide proof of (3). Now,

(
ΞE(O1,O2) + ΞE(O2,O3)

)3
=



1
2

3

√√√√√√√√√√√√√√√√√√√√
 (log0i

TO1)3+1−(log0i
FO1)3+(log0i

(1−FO1))3+1−(log0i
(1−TO1))3

2 κ1

−
(log0i

TO2)3+1−(log0i
FO2)3+(log0i

(1−FO2))3+1−(log0i
(1−TO2))3

2 κ2


3

+
1
2

 (log0i
TO1)3+1−(log0i

FO1)3+(log0i
(1−FO1))3+1−(log0i

(1−TO1))3

2 υ1

−
(log0i

TO2)3+1−(log0i
FO2)3+(log0i

(1−FO2))3+1−(log0i
(1−TO2))3

2 υ2


3

+1
2

3

√√√√√√√√√√√√√√√√√√√√
 (log0i

TO2)3+1−(log0i
FO2)3+(log0i

(1−FO2))3+1−(log0i
(1−TO2))3

2 κ2

−
(log0i

TO3)3+1−(log0i
FO3)3+(log0i

(1−FO3))3+1−(log0i
(1−TO3))3

2 03


3

+
1
2

 (log0i
TO2)3+1−(log0i

FO2)3+(log0i
(1−FO2))3+1−(log0i

(1−TO2))3

2 υ2

−
(log0i

TO3)3+1−(log0i
FO3)3+(log0i

(1−FO3))3+1−(log0i
(1−TO3))3

2 υ3


3



3

=
1
8

(
(υ1κ1 − υ2κ2)3 +

1
2

(υ1υ1 − υ2υ2)3
)

+
1
8

(
(υ2κ2 − υ3κ3)3 +

1
2

(υ2υ2 − υ3υ3)3
)

+
3
8

(
3

√
[(υ1κ1 − υ2κ2)3 +

1
2

(υ1υ1 − υ2υ2)3]2 ×
3

√
(υ2κ2 − υ3κ3)3 +

1
2

(υ2υ2 − υ3υ3)3

)
+

3
8

(
3

√
(υ1κ1 − υ2κ2)3 +

1
2

(υ1υ1 − υ2υ2)3 ×
3

√
[(υ2κ2 − υ3κ3)3 +

1
2

(υ2υ2 − υ3υ3)3]2
)

�
1
4

(υ1κ1 − υ2κ2 + υ2κ2 − υ3κ3)3 +
1
8

(υ1υ1 − υ2υ2 + υ2υ2 − υ3υ3)3

=
1
4

(υ1κ1 − υ3κ3)3 +
1
8

(υ1υ1 − υ3υ3)3

= ΞE(O1,O3)3.

where

υ1 =
1 + (log0i

TO1)3 − (log0i
FO1)3 + 1 + (log0i

(1 −FO1))3 − (log0i
(1 −TO1))3

2
,

υ2 =
1 + (log0i

TO2)3 − (log0i
FO2)3 + 1 + (log0i

(1 −FO2))3 − (log0i
(1 −TO2))3

2
,

υ3 =
1 + (log0i

TO3)3 − (log0i
FO3)3 + 1 + (log0i

(1 −FO3))3 − (log0i
(1 −TO3))3

2
.

�

Corollary 4.1. Let O1 =
〈
(κ1, υ1); [log TO1, log (1 −FO1)], [log FO1,

log (1 −TO1)]
〉
,O2 =

〈
(κ2, υ2); [log TO2, log (1 −FO2)], [log FO2, log (1 −TO2)]

〉
and

O3 =
〈
(κ3, υ3); [log TO3, log (1 −FO3)], [log FO3, log (1 −TO3)]

〉
be any three log FVNNs,

then ΞH(O1,O2) satisfies the following properties.
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(1) ΞH(O1,O2) = 0 if and only if O1 = O2.
(2) ΞH(O1,O2) = ΞH(O2,O1).
(3) ΞH(O1,O3) � ΞH(O1,O2) + ΞH(O2,O3).

5. Log FVNS using AOs

This section introduces the novel concepts of log FVNWA, log FVNWG, log GFVNWA, and log
GFVNWG operators utilizing log FVNS.

5.1. Log FVNWA operator

Definition 5.1. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family

of log FVNNs, Λ = (Λ1,Λ2, ...,Λn) be the weight of Oi, Λi � 0 and �n
i=1Λi = 1 and 0 =∏

[TOi , 1−FOi], [FOi , 1−TOi], then log FVNWA operator is log FVNWA (O1,O2, ...,On) = �n
i=1ΛiOi,

for i=1,2,...,n.

Theorem 5.1. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of log

FVNNs, then log FVNWA (O1,O2, ...,On)

=



(
�n

i=1 Λiκi,�
n
i=1Λiυi

)
;[

3α

√
1 − }n

i=1

(
1 − (log0i

TO i)3α
)Λi
,

3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO i))3α
)Λi

]
,[

}n
i=1 (log0i

FO i)Λi ,}n
i=1(log0i

(1 −TO i))Λi
]

 .

Proof. We use induction method to prove the theorem.

If n = 2, then log FVNWA (O1,O2) = Λ1O1 Y Λ2O2, where

Λ1O1 =



(
Λ1κ1,Λ1υ1

)
;[

3α

√
1 −

(
1 − (log0i

TO1)3α
)Λ1
,

3α

√
1 −

(
1 − (log0i

(1 −FO1))3α
)Λ1

]
,[

(log0i
FO1)Λ1 , (log0i

(1 −TO1))Λ1
]


and

Λ2O2 =



(
Λ2κ2,Λ2υ2

)
;[

3α

√
1 −

(
1 − (log0i

TO2)3α
)Λ2
,

3α

√
1 −

(
1 − (log0i

(1 −FO2))3α
)Λ2

]
,[

(log0i
FO2)Λ2 , (log0i

(1 −TO2))Λ2
]

 .
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Hence,

Λ1O1 Y Λ2O2 =



(
Λ1κ1 + Λ2κ2,Λ1υ1 + Λ2υ2

)
;

3α

√√√√ (
1 −

(
1 − (log0i

TO1)3α
)Λ1)

+
(
1 −

(
1 − (log0i

TO2)3α
)Λ2)

−
(
1 −

(
1 − (log0i

TO1)3α
)Λ1)
·
(
1 −

(
1 − (log0i

TO2)3α
)Λ2)

,

3α

√√√√ (
1 −

(
1 − (log0i

(1 −FO1))3α
)Λ1)

+
(
1 −

(
1 − (log0i

(1 −FO2))3α
)Λ2)

−
(
1 −

(
1 − (log0i

(1 −FO1))3α
)Λ1)
·
(
1 −

(
1 − (log0i

(1 −FO2))3α
)Λ2)


,

[
(log0i

FO1)Λ1 · (log0i
FO2)Λ2 , (log0i

(1 −TO1))Λ1 · (log0i
(1 −TO2))Λ2

]



=



(
Λ1κ1 + Λ2κ2,Λ1υ1 + Λ2υ2

)
;

3α

√
1 −

(
1 − (log0i

TO1)3α
)Λ1
·
(
1 − (log0i

TO2)3α
)Λ2
,

3α

√
1 −

(
1 − (log0i

(1 −FO1))3α
)Λ1
·
(
1 − (log0i

(1 −FO2))3α
)Λ2

 ,[
(log0i

FO1)Λ1 · (log0i
FO2)Λ2 , (log0i

(1 −TO1))Λ1 · (log0i
(1 −TO2))Λ2

]


.

Thus, log FVNWA (O1,O2)

=



(
�2

i=1 Λiκi,�
2
i=1Λiυi

)
;[

3α

√
1 − }2

i=1

(
1 − (log0i

TO i)3α
)Λi
,

3α

√
1 − }2

i=1

(
1 − (log0i

(1 −FO i))3α
)Λi

]
,[

}2
i=1 (log0i

FO i)Λi ,}2
i=1(log0i

(1 −TO i))Λi
]

 .
Suppose that it is true for n = l and l � 3.

Thus, log FVNWA (O1,O2, ...,Ol)

=



(
�l

i=1 Λiκi,�
l
i=1Λiυi

)
;[

3α

√
1 − }l

i=1

(
1 − (log0i

TO i)3α
)Λi
,

3α

√
1 − }l

i=1

(
1 − (log0i

(1 −FO i))3α
)Λi

]
,[

}l
i=1 (log0i

FO i)Λi ,}l
i=1(log0i

(1 −TO i))Λi
]

 .
If n = l + 1 and we apply, then log FVNWA (O1,O2, ...,Ol,Ol+1)

=



(
�l

i=1 Λiκi + Λl+10l+1,�
l
i=1Λiυi + Λl+1υl+1

)
;

3α

√√√√√
�l

i=1

(
1 −

(
1 − (log0i

TO i)3α
)Λi)

+
(
1 −

(
1 − (log0i

TO l+1)3α
)Λl+1)

− }l
i=1

(
1 −

(
1 − (log0i

TO i)3α
)Λi)
·
(
1 −

(
1 − (log0i

TO l+1)3α
)Λl+1)

,

3α

√√√√√
�l

i=1

(
1 −

(
1 − (log0i

(1 −FO i))
3α

)Λi)
+

(
1 −

(
1 − (log0i

(1 −FO l+1))3α
)Λl+1)

− }l
i=1

(
1 −

(
1 − (log0i

(1 −FO i))
3α

)Λi)
·
(
1 −

(
1 − (log0i

(1 −FO l+1))3α
)Λl+1)


,

[
}l

i=1 (log0i
FO i)Λi · (log0i

FO l+1)Λl+1 ,}l
i=1(log0i

(1 −TO i))Λi · (log0i
(1 −TO l+1))Λl+1

]


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=


(
�l+1

i=1 Λiκi,�
l+1
i=1Λiυi

)
;[

3α

√
1 − }l+1

i=1

(
1 − (log0i

TO i)3α
)Λi
, 3α

√
1 − }l+1

i=1

(
1 − (log0i

(1 −FO i))
3α

)Λi

]
,[

}l+1
i=1 (log0i

FO i)Λi ,}l+1
i=1(log0i

(1 −TO i))Λi
]

 .
�

Theorem 5.2. (Idempotency property) If all Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i,

log (1 −TO i)]
〉
(i = 1, 2, ..., n) are equal and Oi = O , then log FVNWA (O1,O2, ...,On) = O .

Proof. Given that (κi, υi) = (κ, υ), [log TO i, log (1 −FO i)] = [log TO , log (1 −FO)] , and
[log FO i, log (1 −TO i)] = [log FO , log (1 −TO)] and �n

i=1Λi = 1.
Now, logFVNWA(O1,O2, ...,On)

=


(
�n

i=1 Λiκi,�
n
i=1Λiυi

)
;[

3α

√
1 − }n

i=1

(
1 − (log0i

TO i)3α
)Λi
, 3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO i))
3α

)Λi

]
,[

}n
i=1 (log0i

FO i)Λi ,}n
i=1(log0i

(1 −TO i))Λi
]


=


(
κ �n

i=1 Λi, υ �
n
i=1 Λi

)
;[

3α

√
1 −

(
1 − (log0i

TO)3α
)�n

i=1Λi
, 3α

√
1
(
1 − (log0i

(1 −FO))3α
)�n

i=1Λi

]
,[

(log0i
FO)�

n
i=1Λi , (log0i

(1 −TO))�
n
i=1Λi

]


=


(κ, υ);[

3α
√

1 −
(
1 − (log0i

TO)3α
)
, 3α

√
1 −

(
1 − (log0i

(1 −FO))3α
) ]
,[

(log0i
FO), (log0i

(1 −TO))
]


= O .

�

Theorem 5.3. (Boundedness property) Let Oi =
〈
(κi j, υi j); [log TO i j, log (1 −FO i j)], [log FO i j,

log (1 −TO i j)]
〉
(i = 1, 2, ..., n); ( j = 1, 2, ..., i j) be the collection of log FVNWA, where κ︸︷︷︸ = min κi j,︷︸︸︷

κ = max κi j, υ︸︷︷︸ = max υi j,
︷︸︸︷
υ = min υi j, log0i

TO︸    ︷︷    ︸ = min log0i
TO i j,︷    ︸︸    ︷

log0i
TO = max log0i

TO i j, log0i
(1 −FO)︸            ︷︷            ︸ = min log0i

(1 −FO i j),︷            ︸︸            ︷
log0i

(1 −FO) = max log0i
(1 −FO i j), log0i

FO︸    ︷︷    ︸ = min log0i
FO i j,︷    ︸︸    ︷

log0i
FO = max log0i

FO i j, log0i
(1 −TO)︸            ︷︷            ︸ = min log0i

(1 −TO i j),︷            ︸︸            ︷
log0i

(1 −TO) = max log0i
(1 −TO i j).

Then,
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〈
( κ︸︷︷︸, υ︸︷︷︸); [log0i

TO︸    ︷︷    ︸, log0i
(1 −FO)︸            ︷︷            ︸], [

︷    ︸︸    ︷
log0i

FO ,
︷            ︸︸            ︷
log0i

(1 −TO)]
〉

� logFVNWA(O1,O2, ...,On)

�
〈
(
︷︸︸︷
κ ,

︷︸︸︷
υ ); [

︷    ︸︸    ︷
log0i

TO ,
︷            ︸︸            ︷
log0i

(1 −FO)], [log0i
FO︸    ︷︷    ︸, log0i

(1 −TO)︸            ︷︷            ︸]
〉
.

where 1 � i � n, j = 1, 2, ..., i j.

Proof. Since, log0i
TO︸    ︷︷    ︸ = min log0i

TO i j,
︷    ︸︸    ︷
log0i

TO = max log0i
TO i j,

log0i
(1 −FO)︸            ︷︷            ︸ = min log0i

(1 −FO i j),
︷            ︸︸            ︷
log0i

(1 −FO) = max log0i
(1 −FO i j) and log0i

TO︸    ︷︷    ︸ �

log0i
TO i j �

︷    ︸︸    ︷
log0i

TO and log0i
(1 −FO)︸            ︷︷            ︸ � log0i

(1 −FO)i j �
︷            ︸︸            ︷
log0i

(1 −FO).

Now,

log0i
TO︸    ︷︷    ︸ + log0i

(1 −FO)︸            ︷︷            ︸
=

3α

√
1 − }n

i=1

(
1 − (log0i

TO︸    ︷︷    ︸)3α
)Λi

+
3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO)︸            ︷︷            ︸)3α
)Λi

�
3α

√
1 − }n

i=1

(
1 − (log0i

TO i j)3α
)Λi

+
3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO i j))
3α

)Λi

�
3α

√
1 − }n

i=1

(
1 − (

︷    ︸︸    ︷
log0i

TO)3α
)Λi

+
3α

√
1 − }n

i=1

(
1 − (

︷            ︸︸            ︷
log0i

(1 −FO))3α
)Λi

=
︷    ︸︸    ︷
log0i

TO +
︷            ︸︸            ︷
log0i

(1 −FO) .

Since, log0i
FO︸    ︷︷    ︸ = min log0i

FO i j,
︷    ︸︸    ︷
log0i

FO = max log0i
FO i j,

log0i
(1 −TO)︸            ︷︷            ︸ = min log0i

(1 −TO i j),
︷            ︸︸            ︷
log0i

(1 −TO) = max log0i
(1 −TO i j) and log0i

FO︸    ︷︷    ︸ �

log0i
FO i j �

︷    ︸︸    ︷
log0i

FO and log0i
(1 −TO)︸            ︷︷            ︸ � log0i

(1 −TO i j) �
︷            ︸︸            ︷
log0i

(1 −TO).

Now,

log0i
FO︸    ︷︷    ︸ + log0i

(1 −TO)︸            ︷︷            ︸ = }n
i=1(log0i

FO︸    ︷︷    ︸)Λi + }n
i=1(log0i

(1 −TO)︸            ︷︷            ︸)Λi

� }n
i=1(log0i

FO i j)Λi + }n
i=1(log0i

(1 −TO i j))
Λi

� }n
i=1(

︷    ︸︸    ︷
log0i

FO)Λi + }n
i=1(

︷            ︸︸            ︷
log0i

(1 −TO))Λi

=
︷    ︸︸    ︷
log0i

FO +
︷            ︸︸            ︷
log0i

(1 −TO) .

Since, κ︸︷︷︸ = min κi j,
︷︸︸︷
κ = max κi j, υ︸︷︷︸ = max υi j,

︷︸︸︷
υ = min υi j and κ︸︷︷︸ � κi j �

︷︸︸︷
κ and︷︸︸︷

υ � υi j � υ︸︷︷︸.

AIMS Mathematics Volume 8, Issue 5, 11397–11424.



11408

Hence, �n
i=1Λi κ︸︷︷︸ � �n

i=1Λiκi j � �
n
i=1Λi

︷︸︸︷
κ and �n

i=1Λi
︷︸︸︷
υ � �n

i=1Λiυi j � �
n
i=1Λi υ︸︷︷︸.

Therefore,

�n
i=1Λi κ︸︷︷︸

2
×



 3α

√√√
1 − }n

i=1

(
1 − (log0i

TO︸    ︷︷    ︸)3α
)Λi


2

+

 3α

√√√
1 − }n

i=1

(
1 − (log0i

(1 −FO)︸            ︷︷            ︸)3α
)Λi


2

2

+1 −

 q

√√√
1 − }n

i=1

(
1 − (log0i

IO︸    ︷︷    ︸)α
)Λi


2

+

 q

√√√
1 − }n

i=1

(
1 − (log0i

IO︸    ︷︷    ︸)α
)Λi


2

2

+1 −

}n
i=1(

︷    ︸︸    ︷
log0i

FO )Λi


2

+

}n
i=1(

︷            ︸︸            ︷
log0i

(1 −TO))Λi


2

2


�
�n

i=1Λiκi j

2
×


 3α

√
1 − }n

i=1

(
1 − (log0i

TO i j)3α
)Λi


2

+

 3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO i j))
3α

)Λi


2

2

+1 −
(
}n

i=1(log0i
FO i j)Λi

)2
+
(
}n

i=1(log0i
(1−TO i j))Λi

)2

2



�
�n

i=1Λi
︷︸︸︷
κ

2
×



 3α

√
1 − }n

i=1

(
1 − (

︷    ︸︸    ︷
log0i

TO)3α
)Λi


2

+

 3α

√
1 − }n

i=1

(
1 − (

︷            ︸︸            ︷
log0i

(1 −FO))3α
)Λi


2

2

+1 −

}n
i=1(log0i

FO︸    ︷︷    ︸)Λi


2

+

}n
i=1(log0i

(1 −TO)︸            ︷︷            ︸)Λi


2

2

 .
Hence, 〈

( κ︸︷︷︸, υ︸︷︷︸); [log TO︸ ︷︷ ︸, log (1 −FO)︸          ︷︷          ︸], [
︷  ︸︸  ︷
log FO ,

︷         ︸︸         ︷
log (1 −TO)]

〉
� FVNWA(O1,O2, ...,On)

�
〈
(
︷︸︸︷
κ ,

︷︸︸︷
υ ); [

︷ ︸︸ ︷
log TO ,

︷          ︸︸          ︷
log (1 −FO)], [log FO︸  ︷︷  ︸, log (1 −TO)︸         ︷︷         ︸]

〉
.

�

Theorem 5.4. (Monotonicity property) Let
Oi =

〈
(κti j , υti j); [log TO ti j , log (1 −FO ti j)], [log FO ti j , log (1 −TO ti j

)]
〉

and

Λi =
〈
(κhi j , υhi j); [log TOhi j , log (1 −FOhi j

)], [log FOhi j , log (1 −TOhi j
)]
〉
(i = 1, 2, ..., n); ( j = 1, 2, ..., i j)

be the families of log FVNWAs. For any i, if there is κti j � υhi j ,(
log0i

TO ti j

)2
+

(
log0i

(1 −FO ti j
)
)2

�
(
log0i

TOhi j

)2
+

(
log0i

(1 −FOhi j
)
)2 (

log0i
FO ti j

)2
+(

log0i
(1 −TO)ti j

)2
�

(
log0i

FOhi j

)2
+

(
log0i

(1 −TOhi j)

)2
or Oi � Wi, then log FVNWA

(O1,O2, ...,On) � q-Rung log FVNWA (W1,W2, ...,Wn).

Proof. For any i, κti j � υhi j . Therefore, �n
i=1κti j � �

n
i=1υhi j . For any i,(

log0i
TO ti j

)2
+

(
log0i

(1 −FO ti j
)
)2
�

(
log0i

TOhi j

)2
+

(
log0i

(1 −FOhi j
)
)2
.

Therefore,

1 −
(
log0i

TO ti

)2
+ 1 −

(
log0i

(1 −FO ti)
)2
� 1 −

(
log0i

TOhi

)2
+ 1 −

(
log0i

(1 −FOhi
)
)2
.
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Hence,

}n
i=1

(
1 −

(
log0i

TO ti

)2
)Λi

+ }n
i=1

(
1 −

(
log0i

(1 −FO ti)
)2
)Λi

� }n
i=1

(
1 −

(
log0i

TOhi

)2
)Λi

+ }n
i=1

(
1 −

(
log0i

(1 −FOhi
)
)2
)Λi

,

and

3α

√
1 − }n

i=1

(
1 −

(
log0i

TO ti

)3α
)Λi

+
3α

√
1 − }n

i=1

(
1 −

(
log0i

(1 −FO ti)

)3α
)Λi

�
3α

√
1 − }n

i=1

(
1 −

(
log0i

TOhi

)3α
)Λi

+
3α

√
1 − }n

i=1

(
1 −

(
log0i

(1 −FOhi)

)3α
)Λi

.

For any i, (
log0i

FO ti j

)2
+

(
log0i

(1 −TO ti j)

)2
�

(
log0i

FOhi j

)2
+

(
log0i

(1 −TOhi j)

)2
.

Therefore,

1 −

(
}n

i=1 log0i
FO ti j

)2
+

(
}n

i=1 log0i
(1 −TO ti j)

)2

2
� 1 −

(
}n

i=1 log0i
FOhi j

)2
+

(
}n

i=1 log0i
(1 −TOhi j)

)2

2
.

�n
i=1κti j

2
×


 3α

√
1 − }n

i=1

(
1 − (log0i

TO ti)3α
)Λi


2

+

 3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FO ti))
3α

)Λi


2

2

+1 −
(
}n

i=1(log0i
FO ti j)

)2
+
(
}n

i=1(log0i
(1−TO ti j))

)2

2



�
�n

i=1κhi j

2
×


 3α

√
1 − }n

i=1

(
1 − (log0i

TOhi)3α
)Λi


2

+

 3α

√
1 − }n

i=1

(
1 − (log0i

(1 −FOhi))
3α

)Λi


2

2

+1 −
(
}n

i=1(log0i
FOhi j)

)2
+
(
}n

i=1(log0i
(1−TOhi j))

)2

2

 .
Hence, log FVNWA (O1,O2, ...,On) � logFVNWA (W1,W2, ...,Wn). �

5.2. Log FVNWG operator

Definition 5.2. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of

log FVNNs, then log FVNWG operator is log FVNWG (O1,O2, ...,On) = }n
i=1O

Λi
i (i = 1, 2, ..., n).

Theorem 5.5. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of log

FVNNs, then

logFVNWG(O1,O2, ...,On)

=


(
}n

i=1 κ
Λi
i ,}

n
i=1υ

Λi
i

)
;
[
}n

i=1(log0i
TO i)Λi ,}n

i=1(log0i
(1 −FO i))Λi

]
,[

3α

√
1 − }n

i=1

(
1 − (log0i

FO i)3α
)Λi
,

3α

√
1 − }n

i=1

(
1 − (log0i

(1 −TO i))3α
)Λi

] .
Theorem 5.6. If all Oi =

〈
(κi, υi); [log TO i, log (1 −FO i)][log FO i, log (1 −TO i)]

〉
are equal and Oi =

O , for i = 1, 2, ..., n, then log FVNWG (O1,O2, ...,On) = O .

Corollary 5.1. Boundedness and monotonicity properties are satisfied using the log FVNWG operator.
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5.3. Log GFVNWA operator

Definition 5.3. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of

log FVNN, then log GFVNWA (O1,O2, ...,On) =
(
�n

i=1 ΛiO∆
i

)1/∆
.

Theorem 5.7. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of log

FVNNs, then log GFVNWA (O1,O2, ...,On)

=



((
�n

i=1 Λiκ
∆
i

)1/∆
,
(
�n

i=1 Λiυ
∆
i

)1/∆
)
;( 3α

√
1 − }n

i=1

(
1 −

(
(log0i

TO i)α
)3α

)Λi
)1/q

,

(
3α

√
1 − }n

i=1

(
1 −

(
(log0i

(1 −FO i))
α
)3α

)Λi
)1/q

 ,
3α

√
1 −

(
1 −

(
}n

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

)3α)1/q

,

3α

√
1 −

(
1 −

(
}n

i=1

(
3α
√

1 −
(
1 − (log0i

(1 −TO i))3α
)α)Λi

)3α)1/q




.

Proof. We prove that,

�n
i=1 ΛiO

∆
i =



((
�n

i=1 Λiκ
∆
i

)
,
(
�n

i=1 Λiυ
∆
i

))
; 3α

√
1 − }n

i=1

(
1 −

(
(log0i

TO i)α
)3α

)Λi

, 3α

√
1 − }n

i=1

(
1 −

(
(log0i

(1 −FO i))
α
)3α

)Λi
 ,}n

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

,}n
i=1

(
3α
√

1 −
(
1 − (log0i

(1 −TO i))3α
)α)Λi




.

The proof based on inductive approach. �

If n = 2, then
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Λ1O1 Y Λ2O2

=



(
Λ1κ

∆
1 + Λ2κ

∆
2 ,Λ1υ

∆
1 + Λ2υ

∆
2

)
;

3α

√√√√√√√√√√√√√√√√√
(

3α

√
1 −

(
1 −

(
(log0i

TO1)α
)3α

)Λ1
)3α

+

(
3α

√
1 −

(
1 −

(
(log0i

TO2)α
)3α

)Λ1
)3α

,

−

(
3α

√
1 −

(
1 −

(
(log0i

TO1)α
)3α

)Λ1
)3α

·

(
3α

√
1 −

(
1 −

(
(log0i

TO2)α
)3α

)Λ1
)3α

3α

√√√√√√√√√√√√√√√√√
(

3α

√
1 −

(
1 −

(
(log0i

(1 −FO1))α
)3α

)Λ1
)3α

+

(
3α

√
1 −

(
1 −

(
(log0i

(1 −FO2))α
)3α

)Λ1
)3α

−

(
3α

√
1 −

(
1 −

(
(log0i

(1 −FO1))α
)3α

)Λ1
)3α

·

(
3α

√
1 −

(
1 −

(
(log0i

(1 −FO2))α
)3α

)Λ1
)3α



,


(

3α
√

1 −
(
1 − (log0i

FO1)3α
)α)Λ1

·

(
3α
√

1 −
(
1 − (log0i

FO2)3α
)α)Λ1

,(
3α
√

1 −
(
1 − (log0i

(1 −TO1))3α
)α)Λ1

·

(
3α
√

1 −
(
1 − (log0i

(1 −TO2))3α
)α)Λ1





=



(
�2

i=1 Λiκ
∆
i ,�

2
i=1Λiυ

∆
i

)
;[

3α

√
1 − }2

i=1

(
1 −

(
(log0i

TO1)α
)3α

)Λi

,
3α

√
1 − }2

i=1

(
1 −

(
(log0i

(1 −FO1))α
)3α

)Λi
]
,}2

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

,}2
i=1

(
3α
√

1 −
(
1 − (log0i

(1 −TO i))3α
)α)Λi




.

Suppose that it is true for n = l and l � 3. Thus,

�l
i=1 ΛiO

∆
i =



(
�l

i=1 Λiκ
∆
i ,�

l
i=1Λiυ

∆
i

)
;[

3α

√
1 − }l

i=1

(
1 −

(
(log0i

TO1)α
)3α

)Λi

,
3α

√
1 − }l

i=1

(
1 −

(
(log0i

(1 −FO1))α
)3α

)Λi
]
,}l

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

,}l
i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi




.

If n = l + 1 and we apply, then,

�l
i=1 ΛiO

∆
i + Λl+1O

∆
l+1 = �l+1

i=1ΛiO
∆
i .

Now,
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�l
i=1ΛiO

∆
i + Λl+1O

∆
l+1 = Λ1O

∆
1 Y Λ2O

∆
2 Y ... Y wlO

∆
l Y Λl+1O

∆
l+1

=



(
�l

i=1 Λiκ
∆
i + Λl+10

∆
l+1,�

l
i=1Λiυ

∆
i + Λl+1υ

∆
l+1

)
;

3α

√√√√√√√√√√√√√√√√√
(

3α

√
1 − }l

i=1

(
1 −

(
(log0i

TO i)α
)3α

)Λi
)3α

+

(
3α

√
1 −

(
1 −

(
(log0i

TO l+1)α
)3α

)Λ1
)3α

,

−

(
3α

√
1 − }l

i=1

(
1 −

(
(log0i

TO i)α
)3α

)Λi
)3α

·

(
3α

√
1 −

(
1 −

(
(log0i

TO l+1)α
)3α

)Λ1
)3α

3α

√√√√√√√√√√√√√√√√√
(

3α

√
1 − }l

i=1

(
1 −

(
(log0i

(1 −FO i))
α
)3α

)Λi
)3α

+

(
3α

√
1 −

(
1 −

(
(log0i

(1 −FO l+1))α
)3α

)Λ1
)3α

−

(
3α

√
1 − }l

i=1

(
1 −

(
(log0i

(1 −FO i))
α
)3α

)Λi
)3α

·

(
3α

√
1 −

(
1 −

(
(log0i

(1 −FO l+1))α
)3α

)Λ1
)3α



,


}l

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

·

(
3α
√

1 −
(
1 − (log0i

FO l+1)3α
)α)Λ1

,

}l
i=1

(
3α
√

1 −
(
1 − (log0i

(1 −TO i))3α
)α)Λi

·

(
3α
√

1 −
(
1 − (log0i

(1 −TO l+1))3α
)α)Λ1





.

Thus,

�l+1
i=1ΛiO

∆
i =



(
�l+1

i=1 Λiκ
∆
i ,�

l+1
i=1Λiυ

∆
i

)
;[

3α

√
1 − }l+1

i=1

(
1 −

(
(log0i

TO1)α
)3α

)Λi

,
3α

√
1 − }l+1

i=1

(
1 −

(
(log0i

(1 −FO1))α
)3α

)Λi
]
,}l+1

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

,}l+1
i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi




.

Hence,
(
�l+1

i=1ΛiO∆
i

)1/∆

=



((
�l+1

i=1 Λiκ
∆
i

)1/∆
,
(
�l+1

i=1 Λiυ
∆
i

)1/∆
)
;( 3α

√
1 − }l+1

i=1

(
1 −

(
(log0i

TO i)α
)3α

)Λi
)1/q

,

(
3α

√
1 − }l+1

i=1

(
1 −

(
(log0i

(1 −FO i))
α
)3α

)Λi
)1/q

 ,
3α

√
1 −

(
1 −

(
}l+1

i=1

(
3α
√

1 −
(
1 − (log0i

FO i)3α
)α)Λi

)2)1/q

,

3α

√
1 −

(
1 −

(
}l+1

i=1

(
3α
√

1 −
(
1 − (log0i

(1 −TO i))3α
)α)Λi

)2)1/q




.

The above expression is true for l � 1. Put α = 1, the log GFVNWA operator is modified to
the log FVNWA operator.

Theorem 5.8. If all Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
(i = 1, 2, ..., n) are

equal and Oi = O , then log GFVNWA (O1,O2, ...,On) = O .

Corollary 5.2. Boundedness and monotonicity properties are satisfied using log GFVNWA operator.
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5.4. Log GFVNWG operator

Definition 5.4. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], log IO i], [log FO i, log (1 −TO i)]

〉
be the

family of log FVNNs, then log GFVNWG (O1,O2, ...,On) = 1
∆

(
}n

i=1 (∆Oi)Λi
)

(i = 1, 2, ..., n) is called a
log GFVNWG operator.

Theorem 5.9. Let Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
be the family of log

FVNNs, then log GFVNWG(O1,O2, ...,On)

=



(
1
∆
}n

i=1 (∆κi)Λi , 1
∆
}n

i=1 (∆υi)Λi

)
;

3α

√
1 −

(
1 −

(
}n

i=1

(
3α
√

1 −
(
1 − (log0i

TO i)3α
)α)Λi

)3α)1/q

,

3α

√
1 −

(
1 −

(
}n

i=1

(
3α
√

1 −
(
1 − (log0i

(1 −FO i))3α
)α)Λi

)3α)1/q

 ,( 3α

√
1 − }n

i=1

(
1 −

(
(log0i

FO i)α
)3α

)Λi
)1/q

,

(
3α

√
1 − }n

i=1

(
1 −

(
(log0i

(1 −TO i))
α
)3α

)Λi
)1/q




.

Put α = 1, the log GFVNWG operator is modified to the log FVNWG operator.

Corollary 5.3. Boundedness and monotonicity properties are satisfied by log GFVNWG operator.

Corollary 5.4. If all Oi =
〈
(κi, υi); [log TO i, log (1 −FO i)], [log FO i, log (1 −TO i)]

〉
are equal and

Oi = O , for i = 1, 2, ..., n, then log GFVNWG(O1,O2, ...,On) = O .

6. Log FVNN based on MADM

We proposed log FVNN with AOs for MADM. A score function based on log FVNN was used to
select the most appropriate option from a set of possibilities in the MADM. Let O = {O1,O2, ...,On} be
the set of n-alternatives, ξ = {ξ1, ξ2, ..., ξm} be the set of m-attributes and weights Λ = {Λ1,Λ2, ...,Λm},
where Λi ∈ [0, 1] and

∑m
i Λi = 1.

Let Oi j =
〈
(κi j, υi j); [log0i

TO i j, log0i
(1 −FO i j)], [log0i

FO i j, log0i
(1 −TO i j)]

〉
denote log

FVNN of alternative Oi in attribute ξ j, i = 1, 2, ..., n and j = 1, 2, ...,m. Since[
log0i

TO i j, log0i
(1 −FO i j)

]
,
[

log0i
FO i j, log0i

(1 −TO i j)
]
∈ [0, 1] and 0 � (log0i

1 −FO i j(ε))α +

(log0i
1 −TO i j(ε))α � 1.

6.1. Algorithm

Step-1: Input the log FVNN decision values.
Step-2: Compute the normalize decision values. The decision matrix n × m is given by

Ξ = (̃ξi j)n×m is normalized into Ξ̂ = (ξ̆i j)n×m; where ξ̆i j =
〈
(κ̂i j, υ̂i j); [ ̂log0i

TO i j, ̂log0i
(1 −FO i j)],

[ ̂log0i
FO i j, ̂log0i

(1 −TO i j)]
〉

and κ̂i j =
0i j

maxi(κi j)
, υ̂i j =

υi j

maxi(υi j)
·
υi j

κi j
, ̂log0i

TO i j = log0i
TO i j,

̂log0i
(1 −FO i j) = log0i

(1 −FO i j), where 0i =
∏

[TOi , 1 −FOi], [FOi , 1 −TOi].
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Step-3: Find the aggregate values for each alternative using log FVNN AOs, attribute ξ j in ξ̃i,
ξ̆i j =

〈
(κ̂i j, υ̂i j); [ ̂log0i

TO i j, ̂log0i
(1 −FO i j)], [ ̂log0i

FO i j, ̂log0i
(1 −TO i j)]

〉
is aggregated into

ξ̆i =
〈
(κ̂i, υ̂i); [ ̂log0i

TO i, ̂log0i
(1 −FO i)],[ ̂log0i

FO i, ̂log0i
(1 −TO i)]

〉
.

Step-4: Calculate the positive and negative ideal values for each case:

ξ̆+ =

( max1�i�n(κ̂i j),min1�i�n(υ̂i j)
)
;

[1, 1], [0, 0]

 and ξ̆− =

( min1�i�n(κ̂i j),max1�i�n(υ̂i j)
)
;

[0, 0], [1, 1]


Step-5: Determine the EDs between each alternative with positive and negative ideal values are

Ξ+
i = ΞE

(
ξ̆i, ξ̆

+
)
; Ξ−i = ΞE

(
ξ̆i, ξ̆

−
)
.

Step-6: To calculate the relative closeness values by Ξ∗i =
Ξ−i

Ξ+
i +Ξ−i

.

Step-7: The maximum value is max Ξ∗i .

6.2. Selection process robotics

This section demonstrates a practical use of MADM utilizing the AOs of log FVNNs. In recent
years, many countries’ agriculture industry has undergone a substantial transition from traditional
farming methods to modern smart farming; we have come a long way, technology has risen to the
challenge and is developing cutting-edge methods to increase rural agriculture productivity. The
ultimate goal is to raise farmer productivity and food yields in order to sustain the world’s expanding
population. The combination of AI with technical instruments, such as drones and moisture sensors,
is key to achieving this type of expansion in a sustainable manner. One such instance is the usage
of robots in agriculture. Farmers can concentrate more on increasing total output yields because of
the automation of laborious, slow, and boring duties performed by agricultural robots. Machines
are designed to lessen some of the daily labor that people must perform. Due to technological
advancement, robots are now capable of doing the labor-intensive, complex, and repetitive activities
found in all disciplines of science and technology. Some robots that use artificial intelligence can
complete given tasks perfectly and constantly. In order to make the application of robots in agriculture
feasible over the long run, a multidisciplinary strategy is needed that will connects engineering
technology with agricultural concepts. In Addition to advancements in processor speed and AI
capabilities, we can now utilize robots in a number of ways to carry out essential tasks. There are
numerous applications for robots in the present day, including directing traffic, managing supplies,
welding metal in hostile conditions, and much more. However, robots may generally be grouped into
following five categories.

(1) Autonomous Mobile Robot(AMR) (Z1):
AMRs move around the world while making judgments almost immediately. They are able to
gather information about their surroundings with the aid of technologies like sensors and cameras.
Having processing equipment on board allows them to analyze the information and make an
informed decision, regardless of whether they are evading an approaching employee, selecting
the optimal packaging, or determining the surface to disinfect.

(2) Articulated Robot (Z2):
Robotic arms and articulated robots are designed to resemble the actions of a human arm. These
usually have between two and ten rotary joints. All those are perfect for arc welding, material
handling, machine tending, and packaging because each extra joint or pivot enables a wider range
of motion.
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(3) Humanoids Robot(Z3):
Although many mobile humanoid robots could be potentially considered AMRs, the word is
typically applied to robots that perform tasks that are human-centric and frequently have human-
like shapes. They use many of the same technology components as AMRs in order to perceive,
plan, and act when performing tasks such as giving instructions or providing customized service.

(4) Cobot Robot (Z4):
Cobots are machines that function independently or in tandem with humans. In contrast to the
majority of other types of robots, cobots can share workplaces with humans to help them work
more efficiently. They are frequently utilized to remove laborious, risky, or taxing operations from
regular work flows. Cobots are occasionally able to detect and respond to human movement.

(5) Hybrid Robot (Z5):
Robots of different kinds are frequently joined to construct hybrid systems that can perform more
difficult jobs. A robot for handling packages inside a warehouse might well be made using an
AMR and a robotic arm. The ability to compute is being concentrated as more complexity is
included in single solutions.

Description and classification for agriculture:

(1) Subsistence Farming (ξ1):
Subsistence farming is performed by the majority of farmers in the state. It is characterized by
small, dispersed landholdings and the use of simple tools. With high levels of poverty, the farmers
do not utilize as much fertilizer and high yielding types in their crops as they could. They typically
lack necessary amenities like irrigation and electricity.

(2) Shifting Agriculture (ξ2):
In order to start this sort of agriculture, a piece of forestland needs to be cleared by cutting down
trees and burning their trunks and branches. After the ground has been cleaned, crops are planted
there for two to three years before being abandoned as the soil loses its fertility. The process is
then repeated as the farmers move to new locations. This method of farming typically involves
the cultivation of dry paddy, maize, millets, and vegetables.

(3) Plantation Agriculture robot (ξ3):
Bush or tree cultivation is known as plantation farming. Rubber, tea, chocolate, coconut, and fruit
crops, grapes, and oranges are all grown as a single crop. It is capital demanding and requires
strong managerial skills, technical expertise, high-end equipment, fertilizers, irrigation systems,
and transportation infrastructure. Agriculture on plantations is an export focused industry. The
majority of the plants used in plantation agriculture have a lifespan of three years or longer.
Tree crops like natural rubber, cocoa in tutus, oil palm, tea, cocoa, and coffee require years
to grow but are thereafter fruitful for extended periods of time. Both sides of the equator are
considered tropical regions for plantation agriculture. On each continent with a tropical climate,
plantations exit. Some plantations, specially those for tea, coffee, and rubber, have on-site or
nearby processing facilities.

(4) Intensive Farming (ξ4):
Farmers use fertilizers and insects extensively in regions where irrigation has been possible.
Additionally, they planted high yielding seed varieties on their land. Agricultural automation
has resulted from the extensive use of machinery in farming. Its traits include a low fallow ratio
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and a larger utilization of inputs like capital and labour per unit of land area, also give it the name
industrial agriculture.

Suppose that five robots as Z = {Z1,Z2,Z3,Z4,Z5}. Four attributes are considered as ξ =

{ξ1, ξ2, ξ3, ξ4} and their weights are Λ = {0.4, 0.3, 0.2, 0.1}. Our goal is to select the best option for
each alternative. Table 1 shows the DM informations.
Step-1: DM information are

Table 1. DM information.

ξ1 ξ2 ξ3 ξ4

Z1


(0.85, 0.8);
[0.5, 0.6],
[0.4, 0.5],




(0.8, 0.5);
[0.5, 0.55],
[0.45, 0.5]



(0.75, 0.65);
[0.8, 0.85],
[0.15, 0.2]



(0.85, 0.65);
[0.7, 0.85],
[0.15, 0.3]


Z2


(0.65, 0.6);
[0.45, 0.5],
[0.5, 0.55],



(0.85, 0.45);
[0.58, 0.6],
[0.4, 0.42],



(0.65, 0.6);
[0.6, 0.65],
[0.35, 0.4],




(0.8, 0.6);
[0.8, 0.85],
[0.15, 0.2]


Z3


(0.9, 0.65);
[0.7, 0.75],
[0.25, 0.3],



(0.75, 0.65);
[0.89, 0.9],
[0.1, 0.11],



(0.85, 0.7);
[0.7, 0.85],
[0.15, 0.3],



(0.75, 0.55);
[0.7, 0.75],
[0.25, 0.3],


Z4


(0.7, 0.6);
[0.6, 0.8],
[0.2, 0.4],



(0.65, 0.5);
[0.7, 0.75],
[0.25, 0.3],



(0.8, 0.75);
[0.6, 0.9],
[0.1, 0.4],



(0.85, 0.7);
[0.85, 0.9],
[0.1, 0.15],


Z5


(0.75, 0.7);
[0.5, 0.55],
[0.45, 0.5],




(0.7, 0.6);
[0.72, 0.77],
[0.23, 0.28],



(0.75, 0.65);
[0.7, 0.75],
[0.25, 0.3],



(0.8, 0.75);
[0.6, 0.95],
[0.05, 0.4],



Table 2 shows the normalized decision matrix informations.

Step-2: Obtain normalized decision matrix:
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Table 2. Normalized decision values.

ξ1 ξ2 ξ3 ξ4

Z1


(0.9444, 0.9412);

[0.5, 0.6],
[0.4, 0.5],



(0.9412, 0.4808);

[0.5, 0.55],
[0.45, 0.5]



(0.8824, 0.7511);

[0.8, 0.85],
[0.15, 0.2]



(1, 0.6627);
[0.7, 0.85],
[0.15, 0.3]


Z2


(0.7222, 0.6923);

[0.45, 0.5],
[0.5, 0.55],



(1, 0.3665);
[0.58, 0.6],
[0.4, 0.42],



(0.7647, 0.7385);

[0.6, 0.65],
[0.35, 0.4],



(0.9412, 0.6);

[0.8, 0.85],
[0.15, 0.2]


Z3


(1, 0.5868);
[0.7, 0.75],
[0.25, 0.3],



(0.8824, 0.8667);

[0.89, 0.9],
[0.1, 0.11],



(1, 0.7686);
[0.7, 0.85],
[0.15, 0.3],



(0.8824, 0.5378);

[0.7, 0.75],
[0.25, 0.3],


Z4


(0.7778, 0.6429);

[0.6, 0.8],
[0.2, 0.4],



(0.7647, 0.5917);

[0.7, 0.75],
[0.25, 0.3],



(0.9412, 0.9375);

[0.6, 0.9],
[0.1, 0.4],



(1, 0.7686);
[0.85, 0.9],
[0.1, 0.15],


Z5


(0.8333, 0.8167);

[0.5, 0.55],
[0.45, 0.5],



(0.8235, 0.7912);

[0.72, 0.77],
[0.23, 0.28],



(0.8824, 0.7511);

[0.7, 0.75],
[0.25, 0.3],



(0.9412, 0.9375);

[0.6, 0.95],
[0.05, 0.4],


Table 3 shows the log FVNWA operator for every alternative.

Step-3: Aggregate information based on log FVNWA operator for every alternative (α = 1).

Table 3. Log FVNWA operator.

Z̆1 Z̆2 Z̆3 Z̆4 Z̆5
(0.9366, 0.7372);
[0.3166, 0.3439],
[0.1985, 0.2064]



(0.8359, 0.5946);
[0.3157, 0.3204],
[0.1988, 0.2014]



(0.9529, 0.7022);
[0.2686, 0.2804],
[0.2465, 0.2482]




(0.8288, 0.699);
[0.2955, 0.3177],
[0.2254, 0.2168]




(0.851, 0.808);
[0.2919, 0.3855],
[0.1838, 0.2338]



Step-4: The both ideal values of each alternatives are

Z̆ + =
[
(0.9529, 0.5946); [1, 1], [0, 0]

]
,

Z̆ − =
[
(0.8288, 0.808); [0, 0], [1, 1]

]
.

Step-5: The HD between every alternative with different ideal values are

Ξ+
1 = 0.6871,Ξ+

2 = 0.7558,Ξ+
3 = 0.6171,Ξ+

4 = 0.7150,Ξ+
5 = 0.7099,

and
Ξ−1 = 0.5631,Ξ−2 = 0.4944,Ξ−3 = 0.6331,Ξ−4 = 0.5352,Ξ−5 = 0.5403.

Step-6: Relative closeness values are

Ξ∗1 = 0.4504,Ξ∗2 = 0.3955,Ξ∗3 = 0.5064,Ξ∗4 = 0.4281,Ξ∗5 = 0.4322.
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Step-7: Ranking of alternatives are

Z3 � Z1 � Z5 � Z4 � Z2.

The humanoid robot Z3 is the best one.

6.3. Comparison between the suggested and existing methods

The comparison between the suggested models and a few of the existing models were made
in this subsection. This demonstrates its value and advantages. Yang et al. discussed the new
notion of interval-valued Pythagorean normal fuzzy information aggregation operators for MADM
approach [21]. Recently, Palanikumar et al. [54] interacted MADM approach for Pythagorean
neutrosophic normal interval-valued aggregation operators. with the use of the log FVNWA, log
FVNWG, log GFVNWA, and log GFVNWG methods respectively, using ED and HD. Table 4 shows
the comparison between existing and proposed methods.

Table 4. Comparison table.

α = 1 FVNWA FVNWG GFVNWA GFVNWG
TOPSIS- HD Z3 � Z1 � Z5 Z3 � Z1 � Z5 Z3 � Z1 � Z5 Z3 � Z1 � Z5

Proposed Z4 � Z2 Z4 � Z2 Z4 � Z2 Z4 � Z2

TOPSIS-HD [21] Z3 � Z4 � Z5 Z3 � Z4 � Z5 Z3 � Z4 � Z5 Z3 � Z4 � Z5

Z1 � Z2 Z1 � Z2 Z1 � Z2 Z1 � Z2

Score (Proposed) Z3 � Z5 � Z4 Z3 � Z5 � Z4 Z3 � Z5 � Z4 Z3 � Z5 � Z4

Z1 � Z2 Z1 � Z2 Z1 � Z2 Z1 � Z2

Score [54] Z3 � Z5 � Z4 Z3 � Z5 � Z4 Z3 � Z5 � Z4 Z3 � Z5 � Z4

Z1 � Z2 Z1 � Z2 Z1 � Z2 Z1 � Z2

Comparison of the merits of the MADM method to those of competing approaches. The nearest
positions and values are listed below. The various values are derived using the log FVNWA technique.
Generate data through using log FVNWA operator for the alternatives (α = 2). Table 5 shows the log
FVNWA operator for every alternative.

Step-3: Aggregate information based on log FVNWA operator for every alternatives (α = 2).

Table 5. Log FVNWA operator.

Z̆1 Z̆2 Z̆3 Z̆4 Z̆5
(0.9366, 0.7372);
[0.3324, 0.3659],
[0.1985, 0.2064],



(0.8359, 0.5946);
[0.3358, 0.3388],
[0.1988, 0.2014]



(0.9529, 0.7022);
[0.2833, 0.3047],
[0.2465, 0.2482]



(0.8288, 0.6990);
[0.3074, 0.3405],
[0.2254, 0.2168]



(0.8510, 0.8080);
[0.3179, 0.4294],
[0.1838, 0.2338]



Step-4: The positive and negative ideal values of each alternative are

Z̆ + =
[
(0.9529, 0.5946); [1, 1], [0, 0]

]
and

Z̆ − =
[
(0.8288, 0.8080); [0, 0], [1, 1]

]
.
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Step-5: The HD between every alternative with different ideal values are

Ξ+
1 = 0.6997,Ξ+

2 = 0.7670,Ξ+
3 = 0.6305,Ξ+

4 = 0.7255,Ξ+
5 = 0.7324,

and
Ξ−1 = 0.5505,Ξ−2 = 0.4833,Ξ−3 = 0.6198,Ξ−4 = 0.5247,Ξ−5 = 0.5178.

Step-6: Relative closeness values are

Ξ∗1 = 0.4404,Ξ∗2 = 0.3865,Ξ∗3 = 0.4957,Ξ∗4 = 0.4197,Ξ∗5 = 0.4142.

Step-7: Ranking of alternatives are

Z3 � Z1 � Z4 � Z5 � Z2.

Figure 1 shows the different α values for all alternative.

Figure 1. Different α values.

6.4. Critical analysis

The ranking of the alternative, based on the log FVNWA method, is Z3 � Z1 � Z5 � Z4 � Z2. In
the event when α = 2, the ranking of the alternatives in a new order is as follows: Z3 � Z1 � Z4 �

Z5 � Z2. Hence, the robotic Z5 is replaced by the robotic Z4 as the best option. The log FVNWG,
log GFVNWA, and log GFVNWG operators can be used in a similar manner.

6.5. Advantages

The applications in the numerous advantages, in accordance with the study previously presented.
It presents the concept of log FVNN by combining the concepts of FVNS. The log FVNN analyses
human behavior and natural events that, in real life, follow a normal distribution. It explains complex
information with the total of TMG, IMG, and FMG being greater than 1, but the square total of its
TMG, IMG, and FMG being less than 1. We find the most suitable alternative based on a set of options

AIMS Mathematics Volume 8, Issue 5, 11397–11424.
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provided by the decision maker using the proposed log FVNS AOs. Therefore, the proposed MADM
technique based on log FVNS AOs provides another approach for finding the most effective alternative
in DM. Depending on α and their own preferences, the decision maker is free to select the outcome.
Different ranking outcomes of each alternative could be produced dynamically with the aid of operators
like log FVNWA, log FVNWG, log GFVNWA, and log GFVNWA.

7. Conclusions

This article focused on the log FVN using MADM problems that arise in various DM domains. We
reached a number of findings in our discussion from several AOs’ log FVNs that have been important
to their log FVNs. We have recommended AO criteria for log FVNWA, log FVNWG, log GFVNWA,
and log GFVNWG. In scenarios with unclear and contradictory facts, the application of the log FVN
based on the MADM methodology can assist individuals in selecting the appropriate action from the
available alternatives. We have applied the operators for log FVNWA, log FVNWG, log GFVNWA,
and log GFVNWG to the MADM problem based on α. The different rankings can be estimated to
use the operators for log FVNWA, log FVNWG, log GFVNWA, and log GFVNWG based on α.
As a conclusion, the α criteria with the strongest effect on the rank of alternatives have also been
examined at. By setting the values of α in line with the real scenario, the decision-makers can choose
the most appropriate ranking. Consequently, the decision-maker can base their method selection on the
actual values of α. In order to show the applicability and benefits of the suggested models, we finally
compared them to many currently employed models. Further discussions will be held on the following
topics are:

(1) Soft sets and expert sets are explored in terms of log FVN.
(2) Based on log FVN, we investigate Pythagorean cubic FSs and spherical cubic FSs.
(3) A generalized Fermatean cubic FS and complex FFS can be used to solve the problem of MADM.
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22. F. K. Gündoğdu, C. Kahraman, Spherical fuzzy sets and spherical fuzzy TOPSIS method, J. Intell.
Fuzzy Syst., 36, (2019), 337–352. http://doi.org/10.3233/JIFS-181401

23. P. D. Liu, G. Shahzadi, M. Akram, Specific types of q-Rung picture fuzzy Yager aggregation
operators for decision-making, Int. J. Comput. Intell. Syst., 13 (2020), 1072–1091.
https://doi.org/10.2991/ijcis.d.200717.001

24. H. Bustince, P. Burillo, Vague sets are intuitionistic fuzzy sets, Fuzzy Set Syst., 79 (1996), 403–
405. https://doi.org/10.1016/0165-0114(95)00154-9

25. A. Kumar, S.P. Yadav, S. Kumar, Fuzzy system reliability analysis using Tw (the weakest t-norm)
based arithmetic operations on L − R type interval valued vague sets, Int. J. Qual. Reliab. Manag.,
24 (2007), 846–860. https://doi.org/10.1108/02656710710817126

26. J. Wang, S. Y. Liu, J. Zhang, S. Y. Wang, On the parameterized OWA operators for
fuzzy MCDM based on vague set theory, Fuzzy Optim. Decis. Mak., 5 (2006), 5–20.
http://doi.org/10.1007/s10700-005-4912-2

27. X. L. Zhang, Z. S. Xu, Extension of TOPSIS to multiple criteria decision making with Pythagorean
fuzzy sets, Int. J. Intell. Syst., 29 (2014), 1061–1078. https://doi.org/10.1002/int.21676

28. C. Jana, M. Pal, Application of bipolar intuitionistic fuzzy soft sets in decision-making problem,
Int. J. Fuzzy Syst. Appl., 7 (2018), 32–55. https://doi.org/10.4018/IJFSA.2018070103

29. C. Jana, Multiple attribute group decision-making method based on extended bipolar fuzzy
MABAC approach, Comput. Appl. Math., 40 (2021), 227.

30. C. Jana, M. Pal, A Robust single-valued neutrosophic soft aggregation operators in multi-criteria
decision making, Symmetry, 11 (2019), 110. https://doi.org/10.3390/sym11010110

31. C. Jana, M. Pal, J. Q. Wang, A robust aggregation operator for multi-criteria decision making
method with bipolar fuzzy soft environment, Iran. J. Fuzzy Syst., 2019.

32. C. Jana, T. Senapati, M. Pal, Pythagorean fuzzy Dombi aggregation operators and its
applications in multiple attribute decision-making, Int. J. Intell. Syst., 34 (2019), 2019–2038.
http://doi.org/10.1002/int.22125

33. K. Ullah, T. Mahmood, Z. Ali, N. Jan, On some distance measures of complex Pythagorean fuzzy
sets and their applications in pattern recognition, Complex Intell. Syst., 6 (2019), 15–27.

34. C. Jana, M. Pal, F. Karaaslan, J. Q. Wang, Trapezoidal neutrosophic aggregation operators and
their application to the multi-attribute decision-making process, Sci. Iran., 27 (2020), 1655–1673.
http://doi.org/10.24200/sci.2018.51136.20

35. C. Jana, M. Pal, Multi-criteria decision-making process based on some single-valued neutrosophic
Dombi power aggregation operators, Soft Comput., 25 (2021), 5055–5072.

36. Z.Yang, J.Chang, Interval-valued Pythagorean normal fuzzy information aggregation
operators for multi-attribute decision making, IEEE Acess, 8 (2020), 51295–51314.
https://doi.org/10.1109/ACCESS.2020.2978976

37. M. S. Yang, C. H. Ko, On a class of fuzzy c-numbers clustering procedures for fuzzy data, Fuzzy
Set Syst., 84 (1996), 49–60. https://doi.org/10.1016/0165-0114(95)00308-8

AIMS Mathematics Volume 8, Issue 5, 11397–11424.

http://dx.doi.org/http://doi.org/10.3233/JIFS-181401
http://dx.doi.org/https://doi.org/10.2991/ijcis.d.200717.001
http://dx.doi.org/https://doi.org/10.1016/0165-0114(95)00154-9
http://dx.doi.org/https://doi.org/10.1108/02656710710817126
http://dx.doi.org/http://doi.org/10.1007/s10700-005-4912-2
http://dx.doi.org/https://doi.org/10.1002/int.21676
http://dx.doi.org/https://doi.org/10.4018/IJFSA.2018070103
http://dx.doi.org/https://doi.org/10.3390/sym11010110
http://dx.doi.org/http://doi.org/10.1002/int.22125
http://dx.doi.org/http://doi.org/10.24200/sci.2018.51136.20
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2020.2978976
http://dx.doi.org/https://doi.org/10.1016/0165-0114(95)00308-8


11423

38. Y. Rong, L. Y. Yu, W. Y. Niu, Y. Liu, T. Senapati, A. R. Mishra, MARCOS approach
based upon cubic Fermatean fuzzy set and its application in evaluation and selecting
cold chain logistics distribution center, Eng. Appl. Artif. Intell., 116 (2022), 105401.
https://doi.org/10.1016/j.engappai.2022.105401

39. Y. Rong, W. Y. Niu, H. Garg, Y. Liu, L. Y. Yu, A hybrid group decision approach based on
MARCOS and regret theory for pharmaceutical enterprises assessment under a single-valued
neutrosophic scenario, Systems, 10 (2022), 106. https://doi.org/10.3390/systems10040106

40. Y. Jin, S. Ashraf, S. Abdullah, Spherical fuzzy logarithmic aggregation operators based
on entropy and their application in decision support systems, Entropy, 21 (2019), 628.
https://doi.org/10.3390/e21070628

41. S. Ashraf, S. Abdullah, F. Smarandache, N. ul Amin, Logarithmic hybrid aggregation operators
based on single valued neutrosophic sets and their applications in decision support systems,
Symmetry, 11 (2019), 364. https://doi.org/10.3390/sym11030364

42. D. Pamucar, I. Badi, K. Sanja, R. Obradovic, A novel approach for the selection of
power generation technology using an linguistic neutrosophic combinative distance-based
assessment (CODAS) method: A case study in Libya, Energies, 11 (2018), 2489.
https://doi.org/10.3390/en11092489

43. B. Bairagi, A homogeneous group decision making for selection of robotic systems using extended
TOPSIS under subjective and objective factors, Decis. Mak. Appl. Manag. Eng., 5 (2022), 300–
315. https://doi.org/10.31181/dmame0304052022b

44. S. Said, H. Bouloiz, M. Gallab, New model for making resilient decisions in an uncertain context:
The rational resilience based decision making model (R2DM), Decis. Mak. Appli. Manag. Eng., 6
(2023), 34–57. https://doi.org/10.31181/dmame0601051229022s

45. M. R. Khan, K. Ullah, Q. Khan, Multi-attribute decision-making using Archimedean
aggregation operator in T-spherical fuzzy environment, Rep. Mech. Eng., 4 (2023).
https://doi.org/10.31181/rme20031012023k

46. M. Riazand, H. M. A. Farid, Picture fuzzy aggregation approach with application
to third-partylogistic provider selection process, Rep. Mech. Eng., 3 (2022), 227–236.
https://doi.org/10.31181/rme20023062022r

47. D. T. Do, Application of fuca method for multi-criteria decision making in mechanical
machining processes, Oper. Res. Eng. Sci. Theory Appl., 5 (2022), 131–152.
https://https://doi.org/10.31181/oresta051022061d

48. S. Biswas, G. Bandyopadhyay, D. Pamucar, N. Joshi, A multi-criteria based stock
selection frameworkin emerging market, Oper. Res. Eng. Sci. Theory Appl., 2022.
https://doi.org/10.31181/oresta161122121b

49. M. K. Hasan, M. Y. Ali, A. Sultana, N. K. Mitra, Some picture fuzzy mean operators and their
applications in decision-making, J. Fuzzy. Ext. Appl., 3 (2022), 349–361.

50. M. Abbas, M. W. Asghar, Y. H. Guo, Decision-making analysis of minimizing the death rate due
to COVID-19 by using q-rung orthopair fuzzy soft bonferroni mean operator, J. Fuzzy Ext. Appl.,
3 (2022), 231–248. https://doi.org/10.22105/jfea.2022.335045.1214

AIMS Mathematics Volume 8, Issue 5, 11397–11424.

http://dx.doi.org/https://doi.org/10.1016/j.engappai.2022.105401
http://dx.doi.org/https://doi.org/10.3390/systems10040106
http://dx.doi.org/https://doi.org/10.3390/e21070628
http://dx.doi.org/https://doi.org/10.3390/sym11030364
http://dx.doi.org/https://doi.org/10.3390/en11092489
http://dx.doi.org/https://doi.org/10.31181/dmame0304052022b
http://dx.doi.org/https://doi.org/10.31181/dmame0601051229022s
http://dx.doi.org/https://doi.org/10.31181/rme20031012023k
http://dx.doi.org/https://doi.org/10.31181/rme20023062022r
http://dx.doi.org/https://https://doi.org/10.31181/oresta051022061d
http://dx.doi.org/https://doi.org/10.31181/oresta161122121b
http://dx.doi.org/https://doi.org/10.22105/jfea.2022.335045.1214


11424

51. F. Liu, G. Aiwu, V. Lukovac, M. Vukic, A multicriteria model for the selection of the transport
service provider: A single valued neutrosophic DEMATEL multicriteria model, Decis. Mak. Appl.
Manag. Eng., 1 (2018), 121–130.

52. C. Jana, G. Muhiuddin, M. Pal, Multi-criteria decision making approach based on SVTrN Dombi
aggregation functions, Artif. Intell. Rev., 54 (2021), 3685–3723.

53. A. K. Adak, G. Kumar, Spherical distance measurement method for solving MCDM
problems under Pythagorean fuzzy environment, J. Fuzzy Ext. Appl., 4 (2023), 28–39.
https://doi.org/10.22105/jfea.2022.351677.1224

54. M. Palanikumar, K. Arulmozhi, C. Jana, Multiple attribute decision-making approach for
Pythagorean neutrosophic normal interval-valued fuzzy aggregation operators, Comput. Appl.
Math., 41 (2022), 90.

55. X. D. Peng, H. Y. Yuan, Fundamental properties of Pythagorean fuzzy aggregation operators,
Fund. Inform., 147 (2016), 415–446. https://doi.org/10.3233/FI-2016-1415

c© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics Volume 8, Issue 5, 11397–11424.

http://dx.doi.org/https://doi.org/10.22105/jfea.2022.351677.1224
http://dx.doi.org/https://doi.org/10.3233/FI-2016-1415
http://creativecommons.org/licenses/by/4.0

	Introduction
	Basic concepts
	Log FVNN and its operations
	Distance between log FVNNs
	Log FVNS using AOs
	Log FVNWA operator
	Log FVNWG operator
	Log GFVNWA operator
	Log GFVNWG operator

	Log FVNN based on MADM
	Algorithm
	Selection process robotics
	Comparison between the suggested and existing methods
	Critical analysis
	Advantages

	Conclusions

