Research article Special Issues

Set-valued minimax programming problems under $ \sigma $-arcwisely connectivity

  • Received: 30 August 2022 Revised: 04 December 2022 Accepted: 10 January 2023 Published: 09 March 2023
  • MSC : 26B25, 49N15

  • A set-valued minimax programming problem (in short, SVMP) is taken into consideration in this study. We present the idea of $ \sigma $-arcwisely connectivity of set-valued maps (in short, SVM) in the broader sense of arcwisely connected SVMs. The sufficient criteria for Karush-Kuhn-Tucker (KKT) optimality are constituted for the problem (MP) under contingent epidifferentiation and $ \sigma $-arcwisely connectivity suppositions. In addition, we develop the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds models of duality and verify the associated strong, weak, and converse theorems of duality among the primal (MP) and the associated figures of duals under $ \sigma $-arcwisely connectivity supposition.

    Citation: Koushik Das, Savin Treanţă, Thongchai Botmart. Set-valued minimax programming problems under $ \sigma $-arcwisely connectivity[J]. AIMS Mathematics, 2023, 8(5): 11238-11258. doi: 10.3934/math.2023569

    Related Papers:

  • A set-valued minimax programming problem (in short, SVMP) is taken into consideration in this study. We present the idea of $ \sigma $-arcwisely connectivity of set-valued maps (in short, SVM) in the broader sense of arcwisely connected SVMs. The sufficient criteria for Karush-Kuhn-Tucker (KKT) optimality are constituted for the problem (MP) under contingent epidifferentiation and $ \sigma $-arcwisely connectivity suppositions. In addition, we develop the Mond-Weir (MWD), Wolfe (WD), and mixed (MD) kinds models of duality and verify the associated strong, weak, and converse theorems of duality among the primal (MP) and the associated figures of duals under $ \sigma $-arcwisely connectivity supposition.



    加载中


    [1] J. P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions, In: Mathematical analysis and applications, Part A, New York: Academic Press, 1981,160–229.
    [2] J. P. Aubin, H. Frankowska, Set-valued analysis, Boston: Birhäuser, 1990.
    [3] M. Avriel, Nonlinear programming: theory and method, Englewood Cliffs, New Jersey: Prentice-Hall, 1976.
    [4] C. R. Bector, B. L. Bhatia, Sufficient optimality conditions and duality for a minmax Ž. problem, Utilitas Math., 27 (1985), 229–247.
    [5] C. R. Bector, S. Chandra, I. Husain, Sufficient optimality conditions and duality for a continuous-time minmax programming problem, Asia-Pac. J. Oper. Res., 9 (1992), 55–76.
    [6] J. Borwein, Multivalued convexity and optimization: a unified approach to inequality and equality constraints, Math. Program., 13 (1977), 183–199. https://doi.org/10.1007/BF01584336 doi: 10.1007/BF01584336
    [7] J. Bram, The Lagrange multiplier theorem for max-min with several constraints, SIAM J. Appl. Math., 14 (1966), 665–667. https://doi.org/10.1137/0114054 doi: 10.1137/0114054
    [8] A. Cambini, L. Martein, M. Vlach, Second order tangent sets and optimality conditions, Math. Jpn., 49 (1999), 451–461.
    [9] S. Chandra, V. Kumar, Duality in fractional minimax programming, J. Aust. Math. Soc., 58 (1995), 376–386. https://doi.org/10.1017/S1446788700038362 doi: 10.1017/S1446788700038362
    [10] H. W. Corley, Existence and Lagrangian duality for maximizations of set-valued functions, J. Optim. Theory Appl., 54 (1987), 489–501. https://doi.org/10.1007/BF00940198 doi: 10.1007/BF00940198
    [11] J. M. Danskin, The theory of max-min with applications, SIAM J. Appl. Math., 14 (1966), 641–644. https://doi.org/10.1137/0114053 doi: 10.1137/0114053
    [12] J. M. Danskin, The theory of max-min and its applications to weapons allocation problems, Berlin, Heidelberg: Springer, 1967. https://doi.org/10.1007/978-3-642-46092-0
    [13] K. Das, C. Nahak, Sufficient optimality conditions and duality theorems for set-valued optimization problem under generalized cone convexity, Rend. Circ. Mat. Palermo, 63 (2014), 329–345. https://doi.org/10.1007/s12215-014-0163-9 doi: 10.1007/s12215-014-0163-9
    [14] K. Das, C. Nahak, Set-valued fractional programming problems under generalized cone convexity, Opsearch, 53 (2016), 157–177. https://doi.org/10.1007/s12597-015-0222-9 doi: 10.1007/s12597-015-0222-9
    [15] K. Das, C. Nahak, Set-valued minimax programming problems under generalized cone convexity, Rend. Circ. Mat. Palermo, 66 (2017), 361–374. https://doi.org/10.1007/s12215-016-0258-6 doi: 10.1007/s12215-016-0258-6
    [16] K. Das, C. Nahak, Optimality conditions for set-valued minimax fractional programming problems, SeMA J., 77 (2020), 161–179. https://doi.org/10.1007/s40324-019-00209-7 doi: 10.1007/s40324-019-00209-7
    [17] K. Das, C. Nahak, Optimality conditions for set-valued minimax programming problems via second-order contingent epiderivative, J. Sci. Res., 64 (2020), 313–321.
    [18] N. Datta, D. Bhatia, Duality for a class of nondifferentiable mathematical programming problems in complex space, J. Math. Anal. Appl., 101 (1984), 1–11. https://doi.org/10.1016/0022-247X(84)90053-2 doi: 10.1016/0022-247X(84)90053-2
    [19] V. F. Demyanov, V. N. Malozehon, Introduction to minmax, New York: Wiley, 1974.
    [20] J. Y. Fu, Y. H. Wang, Arcwise connected cone-convex functions and mathematical programming, J. Optim. Theory Appl., 118 (2003), 339–352. https://doi.org/10.1023/A:1025451422581 doi: 10.1023/A:1025451422581
    [21] J. Jahn, R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Method Oper. Res., 46 (1997), 193–211. https://doi.org/10.1007/BF01217690 doi: 10.1007/BF01217690
    [22] C. S. Lalitha, J. Dutta, M. G. Govil, Optimality criteria in set-valued optimization, J. Aust. Math. Soc., 75 (2003), 221–232. https://doi.org/10.1017/S1446788700003736 doi: 10.1017/S1446788700003736
    [23] A. Mehra, D. Bhatia, Optimality and duality for minmax problems involving arcwise connected and generalized arcwise connected functions, J. Math. Anal. Appl., 231 (1999), 425–445. https://doi.org/10.1006/jmaa.1998.6231 doi: 10.1006/jmaa.1998.6231
    [24] Z. H. Peng, Y. H. Xu, Second-order optimality conditions for cone-subarcwise connected set-valued optimization problems, Acta Math. Appl. Sin. Engl. Ser., 34 (2018), 183–196. https://doi.org/10.1007/s10255-018-0738-x doi: 10.1007/s10255-018-0738-x
    [25] W. E. Schmitendorf, Necessary conditions and sufficient conditions for static minmax problems, J. Math. Anal. Appl., 57 (1977), 683–693. https://doi.org/10.1016/0022-247X(77)90255-4 doi: 10.1016/0022-247X(77)90255-4
    [26] S. Tanimoto, Duality for a class of nondifferentiable mathematical programming problems, J. Math. Anal. Appl., 79 (1981), 286–294. https://doi.org/10.1016/0022-247X(81)90025-1 doi: 10.1016/0022-247X(81)90025-1
    [27] Y. H. Xu, M. Li, Optimality conditions for weakly efficient elements of set-valued optimization with $\alpha$-order near cone-arcwise connectedness, J. Syst. Sci. Math. Sci., 36 (2016), 1721–1729. https://doi.org/10.12341/jssms12925 doi: 10.12341/jssms12925
    [28] G. L. Yu, Optimality of global proper efficiency for cone-arcwise connected set-valued optimization using contingent epiderivative, Asia-Pac. J. Oper. Res., 30 (2013), 1340004. https://doi.org/10.1142/S0217595913400046 doi: 10.1142/S0217595913400046
    [29] G. L. Yu, Global proper efficiency and vector optimization with cone-arcwise connected set-valued maps, Numer. Algebra Control Optim., 6 (2016), 35–44. https://doi.org/10.3934/naco.2016.6.35 doi: 10.3934/naco.2016.6.35
    [30] G. J. Zalmai, Optimality conditions for a class of continuous-time minmax programming problems, New York: Washington State University, 1985.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1191) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog