Research article

Communicable disease model in view of fractional calculus

  • Received: 10 January 2023 Revised: 15 February 2023 Accepted: 19 February 2023 Published: 24 February 2023
  • MSC : 34A08

  • The COVID-19 pandemic still gains the attention of many researchers worldwide. Over the past few months, China faced a new wave of this pandemic which increases the risk of its spread to the rest of the world. Therefore, there has become an urgent demand to know the expected behavior of this pandemic in the coming period. In this regard, there are many mathematical models from which we may obtain accurate predictions about the behavior of this pandemic. Such a target may be achieved via updating the mathematical models taking into account the memory effect in the fractional calculus. This paper generalizes the power-law growth model of the COVID-19. The generalized model is investigated using two different definitions in the fractional calculus, mainly, the Caputo fractional derivative and the conformable derivative. The solution of the first-model is determined in a closed series form and the convergence is addressed. At a specific condition, the series transforms to an exact form. In addition, the solution of the second-model is evaluated exactly. The results are applied on eight European countries to predict the behavior/variation of the infected cases. Moreover, some remarks are given about the validity of the results reported in the literature.

    Citation: Weam G. Alharbi, Abdullah F. Shater, Abdelhalim Ebaid, Carlo Cattani, Mounirah Areshi, Mohammed M. Jalal, Mohammed K. Alharbi. Communicable disease model in view of fractional calculus[J]. AIMS Mathematics, 2023, 8(5): 10033-10048. doi: 10.3934/math.2023508

    Related Papers:

  • The COVID-19 pandemic still gains the attention of many researchers worldwide. Over the past few months, China faced a new wave of this pandemic which increases the risk of its spread to the rest of the world. Therefore, there has become an urgent demand to know the expected behavior of this pandemic in the coming period. In this regard, there are many mathematical models from which we may obtain accurate predictions about the behavior of this pandemic. Such a target may be achieved via updating the mathematical models taking into account the memory effect in the fractional calculus. This paper generalizes the power-law growth model of the COVID-19. The generalized model is investigated using two different definitions in the fractional calculus, mainly, the Caputo fractional derivative and the conformable derivative. The solution of the first-model is determined in a closed series form and the convergence is addressed. At a specific condition, the series transforms to an exact form. In addition, the solution of the second-model is evaluated exactly. The results are applied on eight European countries to predict the behavior/variation of the infected cases. Moreover, some remarks are given about the validity of the results reported in the literature.



    加载中


    [1] J. Li, X. Zou, Modeling spatial spread of infectious diseases with a spatially continuous domain, Bull. Math. Biol., 71 (2009), 2048–2079. http://dx.doi.org/10.1007/s11538-009-9457-z doi: 10.1007/s11538-009-9457-z
    [2] C. Siettos, L. Russo, Mathematical modeling of infectious disease dynamics, Virulence, 4 (2013), 295–306. http://dx.doi.org/10.4161/viru.24041 doi: 10.4161/viru.24041
    [3] S. Jenness, S. Goodreau, M. Morris, Epimodel: an R package for mathematical modeling of infectious disease over networks, J. Stat. Softw., 84 (2018), 1–47. http://dx.doi.org/10.18637/jss.v084.i08 doi: 10.18637/jss.v084.i08
    [4] A. Mahdy, N. Sweilam, M. Higazy, Approximate solution for solving nonlinear fractional order smoking model, Alex. Eng. J., 59 (2020), 739–752. http://dx.doi.org/10.1016/j.aej.2020.01.049 doi: 10.1016/j.aej.2020.01.049
    [5] A. Shaikh, I. Shaikh, K. Nisar, A mathematical model of COVID-19 using fractional derivative: outbreak in India with dynamics of transmission and control, Adv. Differ. Equ., 2020 (2020), 373. http://dx.doi.org/10.1186/s13662-020-02834-3 doi: 10.1186/s13662-020-02834-3
    [6] J. De Abajo, Simple mathematics on COVID-19 expansion, MedRxiv, in press. http://dx.doi.org/10.1101/2020.03.17.20037663
    [7] K. Gepreel, M. Mohamed, H. Alotaibi, A. Mahdy, Dynamical behaviors of nonlinear Coronavirus (COVID-19) model with numerical studies, CMC-Comput. Mater. Con., 67 (2021), 675–686. http://dx.doi.org/10.32604/cmc.2021.012200 doi: 10.32604/cmc.2021.012200
    [8] D. Xenikos, A. Asimakopoulos, Power-law growth of the COVID-19 fatality incidents in Europe, Infect. Dis. Model., 6 (2021), 743–750. http://dx.doi.org/10.1016/j.idm.2021.05.001 doi: 10.1016/j.idm.2021.05.001
    [9] W. Zhu, S. Shen, An improved SIR model describing the epidemic dynamics of the COVID-19 in China, Results Phys., 25 (2021), 104289. http://dx.doi.org/10.1016/j.rinp.2021.104289 doi: 10.1016/j.rinp.2021.104289
    [10] K. Sarkar, S. Khajanchi, J. Nieto, Modeling and forecasting the COVID-19 pandemic in India, Chaos Soliton. Fract., 139 (2020), 110049. http://dx.doi.org/10.1016/j.chaos.2020.110049 doi: 10.1016/j.chaos.2020.110049
    [11] K. Ghosh, A. Ghosh, Study of COVID-19 epidemiological evolution in India with a multi-wave SIR model, Nonlinear Dyn., 109 (2022), 47–55. http://dx.doi.org/10.1007/s11071-022-07471-x doi: 10.1007/s11071-022-07471-x
    [12] S. Margenov, N. Popivanov, I. Ugrinova, T. Hristov, Mathematical modeling and short-term forecasting of the COVID-19 epidemic in Bulgaria: SEIRS model with vaccination, Mathematics, 10 (2022), 2570. http://dx.doi.org/10.3390/math10152570 doi: 10.3390/math10152570
    [13] G. Martelloni, G. Martelloni, Modelling the downhill of the Sars-Cov-2 in Italy and a universal forecast of the epidemic in the world, Chaos Soliton. Fract., 139 (2020), 110064. http://dx.doi.org/10.1016/j.chaos.2020.110064 doi: 10.1016/j.chaos.2020.110064
    [14] P. Naik, M. Yavuz, S. Qureshi, J. Zu, S. Townley, Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan, Eur. Phys. J. Plus, 135 (2020), 795. http://dx.doi.org/10.1140/epjp/s13360-020-00819-5 doi: 10.1140/epjp/s13360-020-00819-5
    [15] J. Zhou, S. Salahshour, A. Ahmadian, N. Senu, Modeling the dynamics of COVID-19 using fractal-fractional operator with a case study, Results Phys., 33 (2022), 105103. http://dx.doi.org/10.1016/j.rinp.2021.105103 doi: 10.1016/j.rinp.2021.105103
    [16] M. Ala'raj, M. Majdalawieh, N. Nizamuddin, Modeling and forecasting of COVID-19 using a hybrid dynamic model based on SEIRD with ARIMA corrections, Infect. Dis. Model., 6 (2021), 98–111. http://dx.doi.org/10.1016/j.idm.2020.11.007 doi: 10.1016/j.idm.2020.11.007
    [17] A. Comunian, R. Gaburro, M. Giudici, Inversion of a SIR-based model: a critical analysis about the application to COVID-19 epidemic, Physica D, 413 (2020), 132674. http://dx.doi.org/10.1016/j.physd.2020.132674 doi: 10.1016/j.physd.2020.132674
    [18] N. Kudryashov, M. Chmykhov, M. Vigdorowitsch, Analytical features of the SIR model and their applications to COVID-19, Appl. Math. Model., 90 (2021), 466–473. http://dx.doi.org/10.1016/j.apm.2020.08.057 doi: 10.1016/j.apm.2020.08.057
    [19] P. Naik, J. Zu, M. Naik, Stability analysis of a fractional-order cancer model with chaotic dynamics, Int. J. Biomath., 14 (2021), 2150046. http://dx.doi.org/10.1142/S1793524521500467 doi: 10.1142/S1793524521500467
    [20] P. Naik, M. Ghoreishi, J. Zu, Approximate solution of a nonlinear fractional-order HIV model using homotopy analysis method, Int. J. Numer. Anal. Mod., 19 (2022), 52–84.
    [21] A. Ahmad, M. Farman, P. Naik, N, Zafar, A. Akgul, M. Saleem, Modeling and numerical investigation of fractional-order bovine babesiosis disease, Numer. Meth. Part. D. E., 37 (2021), 1946–1964. http://dx.doi.org/10.1002/num.22632 doi: 10.1002/num.22632
    [22] M. Ghori, P. Naik, J. Zu, Z. Eskandari, M. Naik, Global dynamics and bifurcation analysis of a fractional-order SEIR epidemic model with saturation incidence rate, Math. Method. Appl. Sci., 45 (2022), 3665–3688. http://dx.doi.org/10.1002/mma.8010 doi: 10.1002/mma.8010
    [23] K. Hattaf, M. El Karimi, A. Mohsen, Z. Hajhouji, M. El Younoussi, N. Yousfi, Mathematical modeling and analysis of the dynamics of RNA viruses in presence of immunity and treatment: a case study of SARS-CoV-2, Vaccines, 11 (2023), 201. http://dx.doi.org/10.3390/vaccines11020201 doi: 10.3390/vaccines11020201
    [24] A. Ebaid, Analysis of projectile motion in view of the fractional calculus, Appl. Math. Model., 35 (2011), 1231–1239. http://dx.doi.org/10.1016/j.apm.2010.08.010 doi: 10.1016/j.apm.2010.08.010
    [25] A. Ebaid, E. El-Zahar, A. Aljohani, B. Salah, M. Krid, J. Tenreiro Machado, Analysis of the two-dimensional fractional projectile motion in view of the experimental data, Nonlinear Dyn., 97 (2019), 1711–1720. http://dx.doi.org/10.1007/s11071-019-05099-y doi: 10.1007/s11071-019-05099-y
    [26] A. Ebaid, C. Cattani, A. Al Juhani1, E. El-Zahar, A novel exact solution for the fractional Ambartsumian equation, Adv. Differ. Equ., 2021 (2021), 88. http://dx.doi.org/10.1186/s13662-021-03235-w doi: 10.1186/s13662-021-03235-w
    [27] A. Aljohani, A. Ebaid, E. Algehyne, Y. Mahrous, C. Cattani, H. Al-Jeaid, The Mittag-Leffler function for re-evaluating the chlorine transport model: comparative analysis, Fractal Fract., 6 (2022), 125. http://dx.doi.org/10.3390/fractalfract6030125 doi: 10.3390/fractalfract6030125
    [28] K. Hattaf, On the stability and numerical scheme of fractional differential equations with application to biology, Computation, 10 (2022), 97. http://dx.doi.org/10.3390/computation10060097 doi: 10.3390/computation10060097
    [29] K. Hattaf, A new generalized definition of fractional derivative with non-singular kernel, Computation, 8 (2020), 49. http://dx.doi.org/10.3390/computation8020049 doi: 10.3390/computation8020049
    [30] O. Arqub, M. Osman, C. Park, J. Lee, H. Alsulami, M. Alhodaly, Development of the reproducing kernel Hilbert space algorithm for numerical pointwise solution of the time-fractional nonlocal reaction-diffusion equation, Alex. Eng. J., 61 (2022), 10539–10550. http://dx.doi.org/10.1016/j.aej.2022.04.008 doi: 10.1016/j.aej.2022.04.008
    [31] O. Arqub, S. Tayebi, D. Baleanu, M. Osman, W. Mahmoud, H. Alsulami, A numerical combined algorithm in cubic B-spline method and finite difference technique for the time-fractional nonlinear diffusion wave equation with reaction and damping terms, Results Phys., 41 (2022), 105912. http://dx.doi.org/10.1016/j.rinp.2022.105912 doi: 10.1016/j.rinp.2022.105912
    [32] S. Rashid, K. Kubra, S. Sultana, P. Agarwal, M. Osman, An approximate analytical view of physical and biological models in the setting of Caputo operator via Elzaki transform decomposition method, J. Comput. Appl. Math., 413 (2022), 114378. http://dx.doi.org/10.1016/j.cam.2022.114378 doi: 10.1016/j.cam.2022.114378
    [33] K. Owolabi, R. Agarwal, E. Pindza, S. Bernstein, M. Osman, Complex Turing patterns in chaotic dynamics of autocatalytic reactions with the Caputo fractional derivative, Neural Comput. Applic., in press. http://dx.doi.org/10.1007/s00521-023-08298-2
    [34] C. Park, R. Nuruddeen, K. Ali, L. Muhammad, M. Osman, D. Baleanu, Novel hyperbolic and exponential ansatz methods to the fractional fifth-order Korteweg-de Vries equations, Adv. Differ. Equ., 2020 (2020), 627. http://dx.doi.org/10.1186/s13662-020-03087-w doi: 10.1186/s13662-020-03087-w
    [35] A. Ebaid, B. Masaedeh, E. El-Zahar, A new fractional model for the falling body problem, Chinese Phys. Lett., 34 (2017), 020201. http://dx.doi.org/10.1088/0256-307X/34/2/020201 doi: 10.1088/0256-307X/34/2/020201
    [36] S. Khaled, E. El-Zahar, A. Ebaid, Solution of Ambartsumian delay differential equation with conformable derivative, Mathematics, 7 (2019), 425. http://dx.doi.org/10.3390/math7050425 doi: 10.3390/math7050425
    [37] F. Alharbi, D. Baleanu, A. Ebaid, Physical properties of the projectile motion using the conformable derivative, Chinese J. Phys., 58 (2019), 18–28. http://dx.doi.org/10.1016/j.cjph.2018.12.010 doi: 10.1016/j.cjph.2018.12.010
    [38] E. Algehyne, E. El-Zahar, F. Alharbi, A. Ebaid, Development of analytical solution for a generalized Ambartsumian equation, AIMS Mathematics, 5 (2020), 249–258. http://dx.doi.org/10.3934/math.2020016 doi: 10.3934/math.2020016
    [39] G. Adomian, Solving Frontier problems of physics: the decomposition method, Dordrecht: Springer, 1994. http://dx.doi.org/10.1007/978-94-015-8289-6
    [40] A. Wazwaz, Adomian decomposition method for a reliable treatment of the Bratu-type equations, Appl. Math. Comput., 166 (2005), 652–663. http://dx.doi.org/10.1016/j.amc.2004.06.059 doi: 10.1016/j.amc.2004.06.059
    [41] H. Bakodah, A. Ebaid, Exact solution of Ambartsumian delay differential equation and comparison with Daftardar-Gejji and Jafari approximate method, Mathematics, 6 (2018), 331. http://dx.doi.org/10.3390/math6120331 doi: 10.3390/math6120331
    [42] J. Duan, R. Rach, A new modification of the Adomian decomposition method for solving boundary value problems for higher order nonlinear differential equations, Appl. Math. Comput., 218 (2011), 4090–4118. http://dx.doi.org/10.1016/j.amc.2011.09.037 doi: 10.1016/j.amc.2011.09.037
    [43] J. Diblík, M. Kúdelcíková, Two classes of positive solutions of first order functional differential equations of delayed type, Nonlinear Anal., 75 (2012), 4807–4820. http://dx.doi.org/10.1016/j.na.2012.03.030 doi: 10.1016/j.na.2012.03.030
    [44] S. Bhalekar, J. Patade, An analytical solution of fishers equation using decomposition method, American Journal of Computational and Applied Mathematics, 6 (2016), 123–127. http://dx.doi.org/10.5923/j.ajcam.20160603.01 doi: 10.5923/j.ajcam.20160603.01
    [45] A. Alenazy, A. Ebaid, E. Algehyne, H. Al-Jeaid, Advanced study on the delay differential equation $y'(t) = ay(t)+by(ct)$, Mathematics, 10 (2022), 4302. http://dx.doi.org/10.3390/math10224302 doi: 10.3390/math10224302
    [46] K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Model., 20 (1994), 69–73. http://dx.doi.org/10.1016/0895-7177(94)00163-4 doi: 10.1016/0895-7177(94)00163-4
    [47] Y. Cherruault, G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Model., 18 (1993), 103–106. http://dx.doi.org/10.1016/0895-7177(93)90233-O doi: 10.1016/0895-7177(93)90233-O
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1572) PDF downloads(96) Cited by(3)

Article outline

Figures and Tables

Figures(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog