Research article Special Issues

On minimal asymptotically nonexpansive mappings

  • Received: 01 December 2022 Revised: 08 February 2023 Accepted: 09 February 2023 Published: 16 February 2023
  • MSC : 46B03, 46B20, 47H09

  • In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.

    Citation: Juan Rafael Acosta-Portilla, Lizbeth Yolanda Garrido-Ramírez. On minimal asymptotically nonexpansive mappings[J]. AIMS Mathematics, 2023, 8(4): 9416-9435. doi: 10.3934/math.2023474

    Related Papers:

  • In this paper we present the following two results: 1.- A characterization of the renorming invariant family of asymptotically nonexpansive mappings defined on a convex, closed and bounded set of a Banach space; 2.- A comparison of the renorming invariant family of asymptotically nonexpansive mappings with the renorming invariant family of nonexpansive mappings. Additionally, a series of examples are shown for general and particular cases.



    加载中


    [1] R. Deville, G. Godefroy, V. Zizler, Smoothness and Renormings in Banach Spaces, Harlow, Essex: Longman Scientific & Technical, 1993.
    [2] M. Fabian, P. Habala, P. Hájek, V. Montesinos Santalucía, J. Pelant, V. Zizler, Functional Analysis and Infinite-Dimensional Geometry, New York: Springer, 2001.
    [3] G. Godefroy, Renormings of Banach spaces, In: Handbook of the Geometry of Banach Spaces, Amsterdam: North Holland, 2001,781–835. https://doi.org/10.1016/S1874-5849(01)80020-6
    [4] A. J. Guirao, V. Montesinos, V. Zizler, Renormings in Banach Spaces, Birkhäuser Cham, 2022. https://doi.org/10.1007/978-3-031-08655-7
    [5] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.2307/1989630 doi: 10.2307/1989630
    [6] S. Banach, Theory of Linear Operations, Amsterdam: North-Holland, 1987.
    [7] A. Beck, A convexity condition in Banach spaces and the strong law of large numbers, Proc. Am. Math. Soc., 13 (1962), 329–334. https://doi.org/10.2307/2034494 doi: 10.2307/2034494
    [8] R. C. James, Uniformly non-square Banach spaces, Ann. Math., 80 (1964), 542–550. https://doi.org/10.2307/1970663 doi: 10.2307/1970663
    [9] C. A. Kottman, Packing and reflexivity in Banach spaces, T. Am. Math. Soc., 150 (1970), 565–576. https://doi.org/10.2307/1995538 doi: 10.2307/1995538
    [10] K. P. R. Sastry, S. V. R. Naidu, Convexity conditions in normed linear spaces, J. für die Reine und Angew. Math., 297 (1978), 36–53. https://doi.org/10.1515/crll.1978.297.35 doi: 10.1515/crll.1978.297.35
    [11] K. Goebel, W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152
    [12] W. A. Kirk, B. Sims, Handbook of Metric Fixed Point Theory, Dordrecht: Springer, 2001. https://doi.org/10.1007/978-94-017-1748-9
    [13] P. K. Lin, There is an equivalent norm on $\ell_1$ that has the fixed point property, Nonlinear Anal., 68 (2008), 2303–2308. https://doi.org/10.1016/j.na.2007.01.050 doi: 10.1016/j.na.2007.01.050
    [14] T. Domínguez-Benavides, A renorming of some nonseparable Banach spaces with the fixed point property, J. Math. Anal. Appl., 350 (2009), 525–530. https://doi.org/10.1016/j.jmaa.2008.02.049 doi: 10.1016/j.jmaa.2008.02.049
    [15] A. Betiuk-Pilarska, T. Domínguez-Benavides, The fixed point property for some generalized nonexpansive mappings and renormings, J. Math. Anal. Appl., 429 (2015), 800–813. https://doi.org/10.1016/j.jmaa.2015.04.043 doi: 10.1016/j.jmaa.2015.04.043
    [16] E. Moreno-Gálvez, E. Llorens-Fuster, The fixed point property for some generalized nonexpansive mappings in a nonreflexive Banach space, Fixed Point Theory, 14 (2013), 141–150.
    [17] T. Domínguez Benavides, S. Phothi, Porosity of the fixed point property under renorming, Fixed Point Theory Appl., 1 (2008), 29–41.
    [18] T. Domínguez Benavides, S. Phothi, The fixed point property under renorming in some classes of Banach spaces, Nonlinear Anal., 72 (2010), 1409–1416. https://doi.org/10.1016/j.na.2009.08.024 doi: 10.1016/j.na.2009.08.024
    [19] T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property for reflexive spaces under renormings, In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, Contemporary Mathematics, 2010,143–155. http://doi.org/10.1090/conm/513/10080
    [20] T. Domínguez Benavides, S. Phothi, Genericity of the fixed point property under renorming in some classes of Banach spaces, Fixed Point Theory Appl., 1 (2010), 55–69.
    [21] J. R. Acosta-Portilla, Intersection of nonexpansive mappings with respect to a finite number of renormings, Fixed Point Theory, 22 (2021), 343–358.
    [22] J. R. Acosta-Portilla, L. Y. Garrido-Ramírez, A characterization of constructible norms for bounded Lipschitzian mappings, Fixed Point Theory, 2022.
    [23] J. R. Acosta-Portilla, C. A. Hernández-Linares, V. Pérez-García, About some families of nonexpansive mappings with respect to renorming, J. Funct. Spaces, 2016 (2016), 9310515. https://doi.org/10.1155/2016/9310515 doi: 10.1155/2016/9310515
    [24] J. R. Acosta-Portilla, C. A. De la Cruz-Reyes, C. A. Hernández-Linares, V. Pérez-García, Lipschitzian mappings under renormings, J. Nonlinear Convex. Anal., 20 (2019), 2239–2257.
    [25] K. Goebel, W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35 (1972), 171–174. https://doi.org/10.2307/2038462 doi: 10.2307/2038462
    [26] C. E. Silva, Invitation to Ergodic Theory, American Mathematical Society, 2018.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1215) PDF downloads(50) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog