Research article

Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations

  • Received: 11 October 2022 Revised: 31 January 2023 Accepted: 01 February 2023 Published: 09 February 2023
  • MSC : 60F15

  • The aim of this paper is to study and establish precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectation space. The methods and tools in this paper are different from those used to study precise asymptotics theorems in probability space. We extend precise asymptotics for complete integral convergence from the classical probability space to sub-linear expectation space. Our results generalize corresponding results obtained by Fu and Yang[13]. We further extend the limit theorems in classical probability space.

    Citation: Lizhen Huang, Qunying Wu. Precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectations[J]. AIMS Mathematics, 2023, 8(4): 8964-8984. doi: 10.3934/math.2023449

    Related Papers:

  • The aim of this paper is to study and establish precise asymptotics for complete integral convergence in the law of the logarithm under the sub-linear expectation space. The methods and tools in this paper are different from those used to study precise asymptotics theorems in probability space. We extend precise asymptotics for complete integral convergence from the classical probability space to sub-linear expectation space. Our results generalize corresponding results obtained by Fu and Yang[13]. We further extend the limit theorems in classical probability space.



    加载中


    [1] P. L. Hsu, H. Robbins, Complete convergence and the law of large numbers, Proc. Natl. Acad. Sci. USA, 33 (1947), 25–31. https://doi.org/10.1073/pnas.33.2.25 doi: 10.1073/pnas.33.2.25
    [2] C. C. Heyde, A supplement to the strong law of large numbers, J. Appl. Probab., 12 (1975), 173–175. https://doi.org/10.2307/3212424 doi: 10.2307/3212424
    [3] R. Chen, A remark on the tail probability of a distribution, J. Multivariate Anal., 8 (1978), 328–333. https://doi.org/10.1016/0047-259X(78)90084-2 doi: 10.1016/0047-259X(78)90084-2
    [4] A. Spătaru, Precise asymptotics in Spitzer's law of large numbers, J. Theoret. Probab., 12 (1999), 811–819. https://doi.org/10.1023/A:1021636117551 doi: 10.1023/A:1021636117551
    [5] A. Gut, A. Spătaru, Precise asymptotics in the Baum–Katz and Davis laws of large numbers, J. Math. Anal. Appl., 248 (2000), 233–246. https://doi.org/10.1006/jmaa.2000.6892 doi: 10.1006/jmaa.2000.6892
    [6] A. Gut, A. Spătaru, Precise asymptotics in the law of the iterated logarithm, Ann. Probab., 28 (2000), 1870–1883. https://doi.org/10.1007/s00574-006-0017-y doi: 10.1007/s00574-006-0017-y
    [7] A. Gut, J. Steinebach, Precise asymptotics–a general approach, Acta Math. Hungar., 138 (2013), 365–385. https://doi.org/10.1007/s10474-012-0236-1 doi: 10.1007/s10474-012-0236-1
    [8] J. He, T. Xie, Asymptotic property for some series of probability, Acta Math. Appl. Sin. Engl. Ser., 29 (2013), 179–186. https://doi.org/10.1007/s10255-012-0138-6 doi: 10.1007/s10255-012-0138-6
    [9] W. Liu, Z. Lin, Precise asymptotics for a new kind of complete moment convergence, Stat. Probab. Lett., 76 (2006), 1787–1799. https://doi.org/10.1016/j.spl.2006.04.027 doi: 10.1016/j.spl.2006.04.027
    [10] Y. Zhao, Precise rates in complete moment convergence for $\rho$-mixing sequences, J. Math. Anal. Appl., 339 (2008), 553–565. https://doi.org/10.1016/j.jmaa.2007.06.070 doi: 10.1016/j.jmaa.2007.06.070
    [11] Y. Zhang, X. Yang, Z. Dong, A general law of precise asymptotics for the complete moment convergence, Chinese Ann. Math. Ser. B, 30 (2009), 77–90. https://doi.org/10.1007/s11401-007-0309-6 doi: 10.1007/s11401-007-0309-6
    [12] Z. Y. Lin, H. Zhou, Precise asymptotics of complete moment convergence on moving average, Acta Math. Sin. (Engl. Ser.), 28 (2012), 2507–2526. https://doi.org/10.1007/s10114-012-0355-1 doi: 10.1007/s10114-012-0355-1
    [13] K. A. Fu, X. R. Yang, Moment convergence rates in the law of the logarithm for dependent sequences, Pro. Math. Sci., 119 (2009), 387–400. https://doi.org/10.1007/s12044-009-0034-z doi: 10.1007/s12044-009-0034-z
    [14] Q. Y. Wu, Precise asymptotics for complete integral convergence under sublinear expectations, Math. Probl. Eng., 2020 (2020), 1787–1799. https://doi.org/10.1155/2020/3145935 doi: 10.1155/2020/3145935
    [15] X. Ding, A general form for precise asymptotics for complete convergence under sublinear expectation, AIMS Math., 7 (2022), 1664–1677. https://doi.org/10.3934/math.2022096 doi: 10.3934/math.2022096
    [16] S. G. Peng, G-expectation, G-Brownian motion and related stochastic calculus of Itô type, In: F. E. Benth, G. Di Nunno, T. Lindstrøm, B. Øksendal, T. Zhang, Stochastic analysis and applications, Springer, 2 (2007), 541–567. http://dx.doi.org/10.1007/978-3-540-70847-6_25
    [17] S. G. Peng, Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation, Stoch. Proc. Appl., 118 (2008), 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [18] X. Fang, S. Peng, Q. M. Shao, Limit theorems with rate of convergence under sublinear expectations, Bernoulli, 25 (2019), 2564–2596. https://doi.org/10.3150/18-BEJ1063 doi: 10.3150/18-BEJ1063
    [19] D. F. Zhang, Z. J. Chen, A weighted central limit theorem under sublinear expectations, Commun. Stat.-Theor. M., 43 (2014), 566–577. https://doi.org/10.1080/03610926.2012.665557 doi: 10.1080/03610926.2012.665557
    [20] X. P. Li, A central limit theorem for m-dependent random variables under sublinear expectations, Acta Math. Appl. Sin. Engl. Ser., 31 (2015), 435–444. https://doi.org/10.1007/s10255-015-0477-1 doi: 10.1007/s10255-015-0477-1
    [21] S. Guo, Y. Zhang, Central limit theorem for linear processes generated by m-dependent random variables under the sub-linear expectation, Commun. Stat-Theor. M., 2022, 1–13. https://doi.org/10.1080/03610926.2022.2028840
    [22] Z. J. Chen, Strong laws of large numbers for sub-linear expectations, Sci. China Math., 59 (2016), 945–954. https://doi.org/10.1007/s11425-015-5095-0 doi: 10.1007/s11425-015-5095-0
    [23] Q. Y. Wu, Y. Y. Jiang, Strong law of large numbers and Chover's law of the iterated logarithm under sub-linear expectations, J. Math. Anal. Appl., 460 (2018), 252–270. https://doi.org/10.1016/j.jmaa.2017.11.053 doi: 10.1016/j.jmaa.2017.11.053
    [24] B. Yang, H. Xiao, Law of large numbers under the nonlinear expectation, Proc. Amer. Math. Soc., 139 (2011), 3753–3762. https://doi.org/10.1090/S0002-9939-2011-10814-1 doi: 10.1090/S0002-9939-2011-10814-1
    [25] Z. T. Zhan, Q. Y. Wu, Strong laws of large numbers for weighted sums of extended negatively dependent random variables under sub-linear expectations, Commun. Stat.-Theor. M., 51 (2022), 1197–1216. https://doi.org/10.1080/03610926.2021.1873380 doi: 10.1080/03610926.2021.1873380
    [26] X. C. Ma, Q. Y. Wu, On some conditions for strong law of large numbers for weighted sums of END random variables under sublinear expectations, Discrete. Dyn. Nat. Soc., 2019 (2019), 7945431. https://doi.org/10.1155/2019/7945431 doi: 10.1155/2019/7945431
    [27] Z. J. Chen, Q. Y. Liu, G. F. Zong, Weak laws of large numbers for sublinear expectation, Math. Control. Relat. F., 8 (2018), 637–651. https://doi.org/10.3934/mcrf.2018027 doi: 10.3934/mcrf.2018027
    [28] C. Hu, Weak and strong laws of large numbers for sub-linear expectation, Commun. Stat.-Theor. M., 49 (2020), 430–440. https://doi.org/10.1080/03610926.2018.1543771 doi: 10.1080/03610926.2018.1543771
    [29] C. Hu, Marcinkiewicz-Zygmund laws of large numbers under sublinear expectation, Math. Probl. Eng., 2020 (2020), 5050973. https://doi.org/10.1155/2020/5050973 doi: 10.1155/2020/5050973
    [30] L. X. Zhang, Exponential inequalities under the sub-linear expectations with applications to laws of the iterated logarithm, Sci. China Math., 59 (2016), 2503–2526. https://doi.org/10.1007/s11425-016-0079-1 doi: 10.1007/s11425-016-0079-1
    [31] L. X. Zhang, Heyde's theorem under the sub-linear expectations, Stat. Probab. Lett., 170 (2021), 108987. https://doi.org/10.1016/j.spl.2020.108987 doi: 10.1016/j.spl.2020.108987
    [32] Y. Wu, X. J. Wang, General results on precise asymptotics under sub-linear expectations, J. Math. Anal. Appl., 511 (2022), 126090. https://doi.org/10.1016/j.jmaa.2022.126090 doi: 10.1016/j.jmaa.2022.126090
    [33] J. Blessing, M. Kupper, Nonlinear semigroups and limit theorems for convex expectations, arXiv, 2022. https://doi.org/10.48550/arXiv.2210.14096
    [34] R. Denk, M. Kupper, M. Nendel, Kolmogorov-type and general extension results for nonlinear expectations, Banach J. Math. Anal., 12 (2018), 515–540. https://doi.org/10.1215/17358787-2017-0024 doi: 10.1215/17358787-2017-0024
    [35] S. G. Peng, A new central limit theorem under sublinear expectations, arXiv, 2008. https://doi.org/10.48550/arXiv.0803.2656
    [36] N. El Karoui, S. G. Peng, M. C. Quenez, Backward stochastic differential equation in finance, Math. Finance, 7 (1997), 1–71. https://doi.org/10.1111/1467-9965.00022 doi: 10.1111/1467-9965.00022
    [37] S. G. Peng, Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob-Meyer type, Probab. Theory Relat. Fields, 113 (1999), 473–499. https://doi.org/10.1007/s004400050214 doi: 10.1007/s004400050214
    [38] Z. J. Chen, L. Epstein, Ambiguity, risk and asset returns in continuous time, Econometrica, 70 (2002), 1403–1443. https://doi.org/10.1111/1468-0262.00337 doi: 10.1111/1468-0262.00337
    [39] M. Marinacci, Limit laws for non-additive probabilities and their frequentist interpretation, J. Econ. Theory, 84 (1999), 145–195. https://doi.org/10.1006/jeth.1998.2479 doi: 10.1006/jeth.1998.2479
    [40] M. M. Xi, Y. Wu, X. J. Wang, Complete convergence for arrays of rowwise END random variables and its statistical applications under sub-linear expectations, J. Korean Stat. Soc., 48 (2019), 412–425. https://doi.org/10.1016/j.jkss.2018.12.002 doi: 10.1016/j.jkss.2018.12.002
    [41] L. Denis, C. Martini, A theoretical framework for the pricing of contingent claims in the presence of model uncertainty, Ann. Appl. Probab., 16 (2006), 827–852.
    [42] Z. J. Chen, L. Epstein, Expected utility theory with purely subjective non-additive probabilities, J. Math. Econ., 16 (1987), 65–88. https://doi.org/10.1016/0304-4068(87)90022-X doi: 10.1016/0304-4068(87)90022-X
    [43] S. G. Peng, Nonlinear expectations and stochastic calculus under uncertainty, arXiv, 2010. https://doi.org/10.48550/arXiv.1002.4546
    [44] L. X. Zhang, The convergence of the sums of independent random variables under the sub-linear expectations, Acta Math. Sin. (Engl. Ser.), 36 (2020), 224–244. https://doi.org/10.1007/s10114-020-8508-0 doi: 10.1007/s10114-020-8508-0
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1113) PDF downloads(67) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog