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1. Introduction

It is well known that complete convergence plays an important role in probability limit theory. Since
the concept of complete convergence was introduced by Hsu and Robbins [1], there have been several
directions of extension. One important topic of them is to discuss the precise rate, which is much more
accurate than complete convergence. Heyde [2] proved for the first time the precise rate of sequences
of independentand identically distributed random variables, and he got the following result:

: 2 _ 2
lim s Z; P(S,| > en) = EX,

under the conditions EX = 0 and EX?> < oo. Results of this kind are frequently called precise
asymptotics. For more results on the precise asymptotics, see Chen [3], Spétaru [4], Gut and
Spataru [5, 6], Gut and Steinebach [7], He and Xie [8], etc. Liu and Lin [9] achieved the precise
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asymptotics for complete moment convergence. From then until now, the study on the precise
asymptotics, no matter for complete convergence or complete moment convergence, is still a hot
issue. For example, Zhao [10] established precise rates in complete moment convergence for p-
mixing sequences; Zhang,Yang and Dong [11] discussed a general law of precise asymptotics for
the complete moment convergence; Lin and Zhou [12] investigated precise asymptotics of complete
moment convergence on moving average; Fu and Yang [13] offered moment convergence rates in the
law of the logarithm for dependent sequences.

The results above are based on the additivity of the probability measures and mathematical ex-
pectations, which are built on the distribution-certainty or model-certainty. However, with the
continuous progress of social economy, many uncertain phenomena gradually appear in financial
insurance, statistical forecasting and other industrial problems, and these uncertain problems cannot
be simulated by additive probability and expectation, such as risk measurement and super hedging in
the field of mathematical finance. For the relevant references, we can refer to El Karoui et al. [36],
Peng [37], Chen and Epstein [38], and so forth. Therefore, inspired by the desire to simulate uncertain
models, academician Peng [16, 17] is the first one to introduce a notion of sublinear expectation. In
the framework of sublinear expectation, we have recently seen a lot of limit theorems, including the
classical (weighted) central limit theory (see Peng [17], Fang et al. [18], Zhang and Chen [19], Li [20],
Guo and Zhang [21], Blessing and Kupper [33]), strong law of large numbers (SLLN) (see Chen [22],
Wu and Jiang [23], Yang and Xiao [24], Zhan and Wu [25], Ma and Wu [26]), weak LLN (see Chen
et al. [27], Hu [28]), Marcinkiewicz-Zygmund LLN (see Hu [29]), and so forth. In addition, there
are some extensions of the precise asymptotics theorems under sub-linear expectations, For example:
Wu [14] obtained precise asymptotics for complete integral convergence under sub-linear expectations;
Ding [15] proved a general form for precise asymptotics for complete convergence under sub-linear
expectations; Wu and Wang [32] investigated general results on precise asymptotics under sub-linear
expectations. Further, since Peng introduced the nonlinear expectation, the theory and application
of the nonlinear expectation have been well developed in financial risk measurement and control.
For instance: Peng [17] established multi-dimensional G-Brownian motion and related stochastic
calculus under G-expectation; Marinacci [39] obtained limit laws for non-additive probabilities and
their frequentist interpretation; Xi et al. [40] offered complete convergence for arrays of rowwise
END random variables and its statistical applications under sub-linear expectations. For more relevant
results, see Denis and Martini [41], Chen and Epstein [42], and so forth.

Motivated by the topic of volatility uncertainty, the theory of the nonlinear expectation and its
applications, we concentrate on precise asymptotics theorems under the sub-linear expectations.
However, many basic properties or tools for classical probability theory are no longer available under
sublinear expectations, the study on limit theorems under sublinear expectations is much more complex
and difficult. The methods and tools in this paper are different from those used to study precise
asymptotics theorems in probability space. We have obtained the precise asymptotics for complete
integral convergence in the law of the logarithm under the sub-linear expectation space. As a result, the
corresponding results obtained by Fu and Yang [13] have been generalized to the sublinear expectation
Space context.

The paper is organized as follows: In Section 2, we summarize some of the basic concepts,
definitions, and related properties under the sub-linear expectations . Not only that, we have also
enumerated some important lemmas that are useful to prove the main results. In Section 3, we establish
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the main results of this paper. The proofs of main results are presented in Sections 4. The conclusion
part is listed in Section 5.

2. Preliminaries

We use the framework and notions of Peng [16]. Let (2, %) be a given measurable space and
let H be a linear space of real functions defined on (€, %) such that if X, X,,...,X, € H then
o(Xi,...,X,) € H foreach ¢ € C;1;,(R,), where C,;;;,(R,) denotes the linear space of (local Lipschitz)
functions ¢ satisfying

lo(x) — (W) < c(1 + [x" + [y[")x —yl, Y X,y €R,,

for some ¢ > 0, m € N depending on ¢. H is considered as a space of random variables. In this case
we denote X € H.

In addition, Denk et al. [34] established that nonlinear expectations can always extend nonlinear
expectations from a certain subset H of bounded measurable functions to the space of all bounded
suitably measurable functions. Following this work, we could directly work on the space of all bounded
measurable functions.

Definition 2.1. (Peng [16]) A sub-linear expectation E on H is a function B : H — R satisfying the
following properties: For all X, Y € H, we have

(a) Monotonicity: If X > Y, then B(X) > E(Y);

(b) Constant preserving: B(c) = ¢;

(¢) Sub-additivity: E(X + Y) < B(X) + E(Y); whenever E(X) + E(Y) is not of the form +co — co or
—00 + 00;

(d) Positive homogeneity: E(1X) = AE(X), 1> 0.

Here R := [—o0, c0]. The triple (Q, H, ) is called a sub-linear expectation space.

Give a sub-linear expectation [, let us denote the conjugate expectation & of F by

8(X) := —-E(=X), VX € H.

From the definition, it is easily shown that for all X, Y € H

&X) <BX), BX +¢)=B(X)+ ¢, B(X-Y)>EX)-E(©),
and

[Ex - BY| < B(X - Y). (2.1)
If B(Y) = &(Y), then B(X + aY) = B(X) + aE(Y) for any a € R.
Next, we consider the capacities corresponding to the sub-linear expectations. Let G Cc F. A
function V : G — [0, 1] is called a capacity if
V(0)=0, V(Q)=1and V(A) < V(B), forVAC B, A,BeG.

I(A) denotes the indicator function of A, A € G, I(A) € ‘H.
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It is called to be sub-additive if V(AU B) < V(A) + V(B) forall A,B € GwithAUB € G. In the
sub-linear space (Q, H, E), we denote a pair (V, V) of capacities by

V(A) := inf(E(€); I(A) < & & € H), V(A) := 1 - V(A), VA € F,
where V(A°) is the complement set of A. It is obvious that V is sub-additive, and
V(A) < V(A), VA € F; V(A) = EU(A)), V(A) = 8U(A)), if I(A) € H.
Property 2.1. Forall Be F, ifn < I(B) < &, n,& € H, then
E(m) < V(B) < E(©). 22)

Remark 2.1. From (2.2), forall X € H, y > 0, y > 0, it emerges that V(X| > y) < B(X]")/y?, which
is the well-known Markov’s inequality.

Remark 2.2. Mathematical expectation corresponds to the integral in (Q, A, P), where the integral
depends on a probability. In (Q,H,B), capacity is an alternative to probability, so what is the
relationship between the capacity and integral? The following is the definition of the upper integral.

Definition 2.2. For all |[X| € H, define
Cy(X)) := f V(X > x)dx.
0

From the above definition, we cannot help but think of the definition of mathematical expectation
in probability space, E(|X]) := fooo P(X] > x)dx. In (Q,H, E), E(lX |) and Cv(|X]) are not related in the
general situations. From Zhang [30], we can learn that B(X]) < Cy(X]) if one of the following three
circumstances is satisfied: (i) E is countably sub-additive; (ii) B(X|-dI(X| > d) — 0, as d — oo; (iii)
|X| is bounded.

Definition 2.3. (Peng [16] and Peng [35])
(i) Identical distribution: Let X; and X, be two n-dimensional random vectors defined, respectively,
in sublinear expectation spaces (Q;, Hj, El) and (Q,, H,, Ez). They are called identically distributed if

Ei((X1)) = B2((X2)), Yo € Crip(R,),

whenever the subexpectations are finite. A sequence {X,;n > 1} of random variables is said to be
identically distributed if for each i > 1, X; and X, are identically distributed.

(i1) Independence: In a sublinear expectation space (Q, H, E), arandom vector Y = {Y1,....Y,}.,Y: €
H, is said to be independent of another random vector X = {X{, ..., X,,}, X; € H, under B if for each test
function ¢ € C;1;,(R,, xR,), we have B(p(X,Y)) = E [E(go(x, Y)) |X:X],whenever o(x) := E(lo(x, Y))) <
oo for all x and E(lg‘o(X)l) < 00,

(iii) IID random variables: A sequence of random variables {X,; n > 1} is said to be independent, if
Xi+1 1s independent of (X, ..., X;) for each i > 1. It is said to be identically distributed, if X; 4 X, for
eachi > 1.
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In the following, let {X,;n > 1} be a sequence of random variables in (Q, H,E), S, = > X . The
symbol ¢ stands for a generic positive constant which may differ from one place to another. Let a, and
b, be positive numbers, a, ~ b, denotes lim,_,, a,/b, = 1, a, < b, denotes that there exists a constant
¢ > 0 such that a, < cb, for sufficiently large x, and /(-) denotes an indicator function.

To prove our results, we need the following four lemmas.

Lemma 2.1. (Zhang [31]). Let {Z,;k = 1, ..., k,} be an array of independent random variables such
that B(Z,.;) < 0, and B(Z2,) < o0,k = 1, ..., k,. Then for all x,y > 0

(2.3)

B,
<V (maXZn,k 2 y) + eXp{)—C - E(— + DIn(1 + ﬂ)},
k<kn y yxy B,

where B, = ZZ”ZIE (Z,ik)

Lemma 2.2. Let {X;; k > 1} be a sequence of independent random variables with B(X) = BE(-X) =0
in (Q,H, E). Then there exists a constant ¢ > 0 such that for any x > 0,

Zn: E X2
V(S| > %) < ckl—z(k). (2.4)
X
Proof. 1t follows from Theorem 3.1 in Zhang [30] that: Let {X;;k > 1} be a sequence of independent

random variables with E(X,) < 0 in (Q, H, E), then

T B 25)

VS, >2x)<c >
X
By BE(-X,) = 0, then, {—X, —X;} also satisfies the conditions of Theorem 3.1 in Zhang [30], we replace
the {X, X;} with the {—X, —X;} in the upper form:

B (x})

V(=S,>x) < c———

(2.6)

X

Therefore, combining with (2.5) and (2.6), we obtain

2B (x7)

VS, 2x) <V (IS, 20)+V(=S,>2x)<c >
X

Hence, we get that (2.4) in Lemma 2.2 is established.

Lemma 2.3. (Wu [14]). Suppose that {X,;n > 1} is a sequence of independent and identically
distributed random variables with B(X) = B(-X) = 0 and B is continuous, set A,(x) := V((S | / Vn) >
x) — V(|| = x), then,

A, = sup|A,(x)] — 0, as n — oo, 22.7)

x>0

where £ ~ N (0,c2.7°|),and 7 = B(X?), ? = &(X?).
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Lemma 2.4. Suppose that the conditions of Lemma 2.3 hold and Cv (Xz) < oo, for ¢ € Cp(R), Cp(R)
denotes the space of bounded continuous functions, then

(S, .
lim B (90( \/ﬁ)) =E (), (2.8)

n—oo

where & ~ N (0, [QZ,EZ]) under B, N is G-normal random variable, o= E(XZ), gz = &(X?).
And

lim V {max |S;| > X\/ﬁ) =2G(x), x> 0, (2.9)

n—oo ( k<n

where 2G(x) = 2Y.2,(=1)'P{IN| = (2i + 1)x} = V(maxo<< |W(@)| > x), W(¢) is a G-Brownian motion
with W(1) ~ N (0, |a2,57|).

Proof. In order to facilitate the proof of the theorems in this paper, we use the conditions of the central
limit theorem in Zhang [32] to prove our Lemma 2.4. Next, we prove that the conditions of Lemma 2.4
satisfy the conditions of Lemma 2.4 (i)—(iii) in Zhang [31], let X© := (=¢) V (X A ¢).

(i) By the condition of Cy (Xz) < oo in Lemma 2.4, E is continuous, then

E(Xz/\c) < CV(X2 /\c) < CV(Xz) < 00,

and E (X2 A c) 1 ¢, hence
lim B(X? A ¢) is finite. (2.10)

(ii) By the condition of Cy (XZ) < oo in Lemma 2.4, then
Cy (X?) = f V(XP > x)dx < co.
0
and combining with V(IX|* > x) | x, hence
lim xV(X]* > x) = 0 & lim x*V(IX| > x) = 0. (2.11)
(ii1) By the condition of Cy (X2) < oo in Lemma 2.4, E is continuous, then
E(X?) < Cy (X?) < o0,

Since,

E (X - o) = B(X| - ¢) Ijxpo)

- |X]
<E(X|-0) (7 Tixise)
BEx?
<— —0,c — oo.
¢
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Hence,
lim B (X] - o)* = 0. (2.12)

Combining with (2.1), (2.12) and B (1X]) < Cv (IX]) < co, we get

[E+X) - BxX)| < B|(X) - (2X)|
=B (X - ) Ijxpso)

=E(X|-¢)" — 0,c — .
Therefore,
lim E(xX)© = B (xX) = 0. (2.13)
By X’>=X*>Ac+ (X2 - c) Lix2s0), WE get

E(X? A c) < BX?) <BX*Ac) + B(X? = O)iese)

Since,
B(X? = Ol sy < Cy (X7 = O)xese)
- fo Ty (X2 = Olxse) > 1) dt
= fomw’(x2 > ¢ + 1)dt
:fooV(X2>y)dy y=c+1)
—>CO, c —> 00,
Hence,

lim B(X? A ¢) = B(X?). (2.14)

Therefore, (2.10), (2.11) and (2.13) corresponds to the conditions of Lemma 2.4 (i)—(iii) in
Zhang [31], respectively. By (2.14), we obtain & = lim._,., B(X?*Ac) = B(X?), 0 = lim .« &X*Ac) =
&(X?). Hence, we get that (2.8) and (2.9) are established.

For better understanding Lemma 2.4, we need to review some central limit theorems under the sub-
linear expectations. Peng [35,43] initially proved that: If B(X;) = B(-X,) = 0 and E (|X1 |2+a) < oo, for

some @ > 0, then lim, o B (¢ (££)) = B (p(&)), where &£ ~ N (0,[¢2,57]), 7 = B(X}), o? = 8(XD).

On the basis of Peng [35,43], Zhang [30] showed that the moment condition that B (|X | |2+") < oo can be
weakened to B [(le | - c)+] — 0 as ¢ — oo. Further, Zhang [44] proved the sufficient and necessary

conditions for the central limit theorem : (i) lim,_,, E(Xf Ac)is finite; (ii) x*V(|X;| > x) — Oas¢c —
oo; (1i1) lim,_, B [-cV X Ac] = lim,_, B [-c V (—=X}) A ¢] = 0. Under the sufficient and necessary
conditions in Zhang [44], Zhang [31] further extended the central limit theorem for maximum value.
On the basis of Zhang [31], we use the conditions of the central limit theorem in Zhang [31] to prove

our Lemma 2.4 in this paper.
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3. Main results

In this subsection, we first recall some notations which will be used in the main results.
IfE (lX |2+‘5) < 00 (60 > 0), combining with Markov’s inequality, it is easy to derive that

Cy(X?) = f V(X% > x)dx
0

= f V(X| > x'/*)dx
0

OOE X2+5
<1+ [ S,
1

1072

Therefore, for any ¢ > 0, we know that B (lX |2+5) < oo implies Cy(X?) < oo.
Now we present our results, which are stated as follows.

Theorem 3.1. Let {X, X,;n > 1} be a sequence of independent and identically distributed random
variables in (Q, H,B) with B(X) = B(-X) = 0, there exists a constant § > 0 such that B (lX |2+‘5) <00,

We assume that B is continuous, then for any b > —1/2,

)b—l /2

CV (|§|2b+2)
Cy (|S,1|1(|S,1| > &VnIn n)) = ST (3.1)

= (Inn
lim 82b+1

£—0 n3/2
n=2

where & ~ N (0,[02.57|).and & = B(X?), o2 = &(X?).

1

Remark 3.1. Under the moment condition with Cy (IXIzvs) in Theorem 2.2 of Wu and Wang [32], we

take s = Tlﬂ, p = 1and g(x) = (nx)**" in Theorem 2.2 of Wu and Wang [32], then for 0 < p < %, we
have (3.1). However, if b > 0, the moment condition of Theorem 3.1 is weaker than that of Theorem 2.2
in Wu and Wang [32].

For further investigation, Theorem 3.2 further studies the maximum value of partial sums.

Theorem 3.2. Let M,, = max<, |S|. Under the conditions of Theorem 3.1, we have

lime2t*! o (Inn)”~'7? Vilon
ime 373 Cy (MnI(M,, >eVnln n))
e—0 = n

_ 2FE |N|2(b+l) (_l)l
b+ DRb + 1) & (20 + 120D

(3.2)

(>

where N is a standard normal random variable.

Remark 3.2. Theorems 3.1 and 3.2 extend the corresponding results obtained by Fu and Yang [13]
from the probability space to sublinear expectation space.

AIMS Mathematics Volume 8, Issue 4, 8964-8984.



8972

4. Proof of main results

4.1. Proof of Theorem 3.1
Note that

G2+ (In )"
Z ———Cy (IS, 10| > £ Vn In )

n3/2

b— 1/2
”“Efm) Cy (1611061 2 & Vin n)

n=2

G2+ Z (Inn

—QJMKMZemeN
=1 (e) + L(e).

)b 1/2

—l/zcv (ISnl 10S,] > e Vnln n))

Hence, in order to establish (3.1), it suffices to prove that

Cy (|§|2b+2)
b+ 1D2b+1)

ili% Li(e) =
and
lir% L) =0

We first prove (4.1). For any b > —1/2, then

2b+1 (In ”)b 12
lim/,(s) = lime Z R f V(1€ 1(¢] > & Vin n) > x) dx
0

1 b—1/2 00
= lim 2+ Z % f V(€] > x)dx
evVin n

&0 n=2 n
00 1 b—1/2 00
— Tim 2! f DA f V(¢l > x)dx
&0 2 y s\/ln_y
= 21im ~bdr f V(j€ > x)dx (r=e+/my)
e—0 8m "
=21lim V(& > x)dx f 2vdr
=0 Jevin 2 eVin 2
2 (o)
— 1 V > 2b+1 1 2 2b+1 d
2b+1§33f8m (1612 ) (! = (e VIn 2)"*") dx
2 2b+1 2 . Vi
- > -
= a1 ), © V0 z 9dv - S lim (s Vin2) i
V(lé;|2b+2)

T BrD2b+ 1)

V(l£] = x)dx

4.1)

4.2)
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Next, we prove (4.2). Without loss of generality, here and later, we assume that B(X?) = 1. Let
b(M, &) = exp(M/&*), M > 6. Note that

b-1/2
IL(e)] <s2*! Z (In n,z | -12¢, (lSnll(lSnI >&eVnln n)) - Cy (|§| 1(¢] > 8\/111_”))’
n<b(M.,e)
G20+ (In n)>Y 2
1S, 1(1S ] = € Vn In n)
”(ZM) ! ) 4.3)
b-1/2
+ ! Z %CV (lfl I(|€] = € VIn n))
n>b(M,e)

=hi(e) + In(e) + Ins(e).
Hence, in order to establish (4.2), it suffices to prove that
lir% L(e) =0, 4.4)
and
Mlii)noo In(e) =0, A}inw Ix(e) =0, (4.5)

uniformly for 0 < ¢ < 1/4.

We first prove (4.4). Let T, = (In n)™"2A;"? and A, = sup,.,[V(IS,l > x Vi) = V(i > x)|. It
follows from Lemma 4 in Wu [14] that Efz < 00, by (2.7) in Lemma 2.3 and (2.4) in Lemma 2.2,
Markov’s inequality, we get

In n)-1/2 00 o0
L (e) =gt Z % n? f V(S,| = x+&Vnlnn)dx — f V(€] = x + e VIn n)dx
n<b(M.) n 0 0
2b+1 (Inn)’
e N ‘V(IS,ZI > (x+ &) Vnlnn) - V(g > (x + &) Vin n)‘ dx
nsbe) 0
Inn)’ (T
<y (nn) f nlnn)— V(& > (x+ &) Vin n)‘ dx
n<b(M.,e) n 0
1 b
g2l Z (In ”) f V(S > (x+ &) Vulnn) + V(¢ > (x + &) VIn n)) dx
n<b(M.,e)
nTits) n L r, \(x+&nlnn (x+¢&)lnn
< g2+ Z (In n)*~'2A, + g2 Z (In n)>~! foo 1 dx
n<b(M.,e) n n<b(M,e) n Ly (x+e)
< g (In n)>~'12A,2 .
n<b(M,e) n

((1n n)t~12 /n) = O (In(b(M, g)))"*'? = o(g-%-l) — 00,8 — 0,
n<b(M.,e)
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using Lemma 2.3, A, — 0 as n — oo, and combining with Toeplitz’s lemma: If x, — x,w; > 0,
and Y7, w; — oo, then (31, w;x;/ Y\ w;) — X, we obtain

1 b—1/2A1/2
NG < g?btl Z (nn)—,,

n<b(M,e) n

b-1/2A1/2
_ Zuzpos) ((n w124, ) (4.6)

£-2b-1
Znsb(M,g) ((ln n)b_l/ZAllq/Z/n)
2in<h(Me) ((In n)>=172/n)

— 0,e — 0.

That is, (4.4) is established.
Next, we prove (4.5). For 0 < u < 1, let ¢(x) € C;;,(R) be an even and nondecreasing function on
x > 0 such that 0 < ¢(x) < 1 for all x and ¢(x) = 0 if |x| < u, ¢(x) = 1 if |x| > 1. Hence,

I(xd=1) <) <I(xl=p). 4.7)
Therefore, by (2.2), (4.7) and the identical distribution of X, X;, for any x > 0,

V(X > 0 < E(tp(é)) - E(go();()) <V(X| = ). (4.8)

By (4.8) and taking x = e Vnlnnand y = e VuIln n/(2 + b) in (2.3) of Lemma 2.1, for n > b(M, &) >
exp(6/g?), we get

(maxSk >¢ nlnn)

k<n
eVnlnn &lnn
< X|>— 2 -2 In(1
_i:1 (I | > b +exp{( + b) (+b)n( +2+b)}

<nV (|X| >ceVnln n) + !

82(2+b)(1n n)(2+b) :

Since {—X, —X;} also satisfies the conditions of Theorem 3.1, we replace the {X, X;} with the {—X, —X;}
in the upper form:

1
V(r?ax(—Sk) >e&Vnln n) < nV (|X| >ceVnln n) +

£2(2+b) (ln n)(2+b) '

Therefore,

V(rilaxlS |>8annn) <V(maxSk>8annn)+V(r£1ax( -S )>8Vn1nn)

k<n

<nV (IXI > ceVnln n) + !

£22+h)(In p)@+H)

More generally, for any x > 0 and n > exp(M/&?), we have

1
V(rg{lax ISl = (x+¢&)Vnln n) <nV (|X| >c(x+&)Vnln n) +

(x + 8)2(2+b)(1n n)(2+b) (4‘9)

=11 (e) + 11;(e).

AIMS Mathematics Volume 8, Issue 4, 8964-8984.



8975

Combining with (4.9), we get

1 b=1/2 oo
In(g) =+ Z dnm)” 7 f V(S| = x + & Vn In n)dx
0

32
n>b(M,e) n
Inn)b-12
<g?! Z (nm™ 7 V(max|Si| > x + & Vn In n)dx
n3/2 0 k<n

n>b(M,e)

Inn)? [ B
=g?b+1 Z (nn) f V(max |S] > (x + &) Vn In n)dx
n 0 k<n

n>b(M.,e)

b 00
<! Z (lnn”) f (1, (¢) + I, () dx
0

n>b(M.,e)

b oo
=g+ Z (lnnn) fo nV (IXI > c(x+¢&)Vnln n) dx

n>b(M,e)

241 (nn)” (= 1
Te Z n ‘fo (x + &)2C+D)(In n)@+H) dx

n>b(M,e)
121111(8) + 1122(8).

By the Markov’s inequality, and B (lX |2+5) < oo, we assume that €2 < 1/16, then

2b+1 Z (In n)? foo nB | x> B
il N o (x+&)*9(nln n)l+o/2

In n)b-1-0/2 1
< g2l (Inn) dx
n1+6/2 0 (x + 8)2+6

n>b(M,e)

I1(e) x ¢

In n)o-1-0/2
< gt Z (n " 77 £

nl+o/2
n>b(M,e)
< &7 (b(M, £)))"" 2 (b(M, )7 7!

_ _ 1= -2 _
— 82b 5(M8 Z)b 1 5/2(eM8 ) 6/2
1
eM(5/282
1

b—1-6/2
<M e8Ms

-1-6

— 82Mb—1—6/2

— 0, M — oo,

uniformly for 0 < & < 1/4.
Since,

1 0 1
1l — 2b+1 f d
22(8) & n>%;1,5) n (ln n)2 0 (x + 8)2(2+b) X

2b+1 1 -3-2b

e n (In n)?

n>b(M,e)

(4.10)

(4.11)
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0 1
-2
~& dx
fb(M,é,‘) X(ln .X)z

< &2 (In (b(M, €)™
=g (Ms_z)_l
=M"'—0,M — co. 4.12)
Therefore, combining with (4.10)—(4.12), we obtain
Mli_r}noo In(e) =0, (4.13)

uniformly for 0 < ¢ < 1/4.
Finally, it follows from Lemma 4 in Wu [14] that B |¢]” < co, by Markov’s inequality, for p > 2b+2,
we have

b-1/2 oo
Is(e) = Z %[ V(€] = x + € Vin n)dx
0

n>b(M.e)
Inn)? [
=gy G f V(e > (x + &) Vinmdx
wobe) 0
o Y (o 7 Bl
- n>b(M.,e) n o (x+&)P(In n)r?
Inn)er2 > 1
wghtl Z (In n) f .
n>b(M.e) n o (x+ey
In n)>-r/2
<<82b+1 Z Lg—pﬂ
n>b(M.g) n

*  (In x)>-P/?
~g2bt2-p f ( ) dx
b(M,e) X

<& (In (b(M, &))"*'77?

— 82b+27p ( Me

b+1-p/2
,2) p _ Mb+1—p/2 N O,M — 0,

uniformly for 0 < € < 1/4.
From this, combining with (4.6) and (4.13), (4.2) is established. This completes the proof of
Theorem 3.1.

4.2. Proof of Theorem 3.2

Note that

©n 7)1/

201 %Cv (M,,I(M,, >eVnln n))

n
n=2
2b+1 — (In n)>~!/2
=1 Y Sy (max W) Hnax WG] 2 & Vinm)
> n 0<t<1 0<t<1
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b-1/2

+ g2l i (nm™ {n_l/ZCV (M,,I(M,, >eVnln n))
n=2

n
~Cy(max [W(0)] I(max W) > & Vin n))} = Hy(e) + Hy).
<t< <t<
Hence, in order to establish (3.2), it suffices to prove that

2EINFOY & (=)
(b+1)2b + 1) & (20 + 1)20+D’

lirr& Hi(e) =

and
lir% H>(e) =0.

We first prove (4.14). Combining with (2.9) in Lemma 2.4, for any b > —1/2, we get

- sl (ln n)b—l/Z 00
lim H,(¢) = lim £20*1 Z -7 f V(max |W(5)| = x)dx
&—0 =0 = n evVinn 0<t<1

00 1 b-1/2 00
=lim &?*! %dy V(max |W()| > x)dx
2 y gyflny  0si<]

e—0

=41im u?bdu f G(x)dx (u :8\/1n_y)
&e—0 evVin 2 u

:42(—1)"11m u?du f P(IN| > (2i + 1)x)dx
i=0 #20 Jevin2 u

=4 (=1)'lim P(IN| > (2i + 1)x)dx f w? du
=0 #20 Jevin 2 sVin 2

— 4 N i1; - . 2b+1 2b+1

=%+ D) ;H) fim | PNI2 @0+ D0 (2! — (e Vin27 ) ax
4 o

= -1y AP (IN| > (2i + 1)x)d

(ZbH);( )fox (INT = (2i + 1)) dx

(o)

__4 Z(—l)ilina(sx/lnmzb“ f P(IN| > (2i + D)x)dx
i=0 &

2b+1) Vin 2

B 2E |N|2(b+1) (_1)1
C(b+1)(2b+ 1) & 20+ 120D

(o9

Next, we prove (4.15). Note that

1 b—1/2
|Hye)] <e*1 Y (nn) 7 |n—1/2cV (M 1(M, > eVnnn))
n

n<b(M,e)

—Cy (gna)i W) I(Oma)i [W(t)| = € VIn n))
<t< <t<

4.14)

(4.15)
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2b+1 (In n)>~1/2
s Z — 7 Cy (MnI(Mn > eVnln n))

3/2
n>b(M.,e) n

In n)b-172
4 b+l Z %CV (max [W(£)| I(max [W(#)| > & VIn n))
n>b(M.g) n 0<r<1 0<t<1

:=H, (&) + Hxn(e) + Hx(e).
Hence, in order to establish (4.15), it suffices to prove that
li_r)r(} H (e) =0, (4.16)
and
Jim Hy(e) =0, Nim Hys(e) =0, (4.17)

uniformly for 0 < & < 1/4.
Now, we prove (4.16). Note that

1o 7)P-172 oo
Hy () = Z (nm™ 7 n f V(M, > x+e&Vnlnn)dx
0

n<b(M,e) n

— f V(gna)i [W()| = x + € Vin n)dx
0 <t<

Iy (=
<g2ht! Z (In n) f ’V(Mn > (x+ &) Valnn) — V(max |W()| > (x + &) VIn n)|dx
n<b(M,e) n 0 0<r<1
b (%
—g2h+l Z (In n) f V(M, > (x+ &) Vnln n) — V(max |W(7)| > (x + &) Vln n)| dx
n<bte) 0 0<i<1
nny (=
NS (In ) f V(M, > (x+ &) Vuln n) = Vmax [W()| = (x + &) Vin )| dx
n 0 <t<
nSb(M,S) n

=J1(e) + Jr(e).

Let 6, = (Inn)~""2[;"* and [, = sup ., |V(Mn > xn) — V(maxg<.<; [W(0)| > x)|. Similarly to the proof
of Iy, it follows from (2.9) of Lemma 2.4 that /, — 0 as n — oo, then

1 b gn
Ie) =&ty (In ) f I, dx
n 0

n<b(M,e)

- (4.18)
< g1 (In n)*~'72 e
n<b(M,e)
Since,
2b+1 (Inn)’
Jo(e) <e Z —_— % (Mn >(x+¢&)Vnin n) dx
n<b(M,e) n 6n
Inn)t [
+ g2t Z (In ) f v (max W) > (x + &) Vin n) dx (4.19)
n<b(M.c) n O, 0<r<1
=J1(e) + In(e).
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For J,,(¢), is similar considerations to (4.9)—(4.13), we obtain

J21 (8) :82b+1
n<b(M,e)

< g2b+1 Z

n<b(M,e)

(In n)®

(In n)

f \'% (nkqax ISkl = (x+¢&)Vnln n) dx
‘gn <n

fm nV(IXI > c(x + &) Vn In n)dx

O

In n)” 1
+e! ( n ) f (x + £)22+b)(In 1)@2+D) dx
n<b(M,e)

(ln I’l)b 1-6/2

<g?htl Z

f (x+ 8)2+5

1+6/2
n<b(M,e)
2b+1
+ d
° ns%d,s) n(In n)? L, (x+ 3)2(2”’) g (4.20)
In n)b-1-5/2 L
<<82b+1 Z ( n I’l1)+6/2 ((ln n)_l/zl,;l/z) 1-6
n<b(M.,e) n
—3-2b
2b+1 ~1/2:-1)2
+& (Inn)~""7L,
ngbz(ll;[,a) n(In n)? ( )
< 2! Z (In ?3;)/—21/2 1,1/2“5/2 4 2! Z (In n)>~1/2 1,3/2”’
n<b(M.,e) n n<b(M.,e)
<2t Z (In n)" 7 [z,
n<b(M.,e) n
Combining with (2.9) in Lemma 2.4, and Markov’s inequality, we get
2b+1 (Inn)>
Jn(e) =2¢ Z G ((x + &) Vin n) dx
n<b(M.e) On
2b+1 (In n)’ | e .
e Z Z(—l) P(IN| 2 (2i + 1)(x + &) Vin n) dx
n<b(M.,e) i=0 On
Inn) | (-1 [~ EIN]
weote N s Qi+1)J, (x+e&)ilnn

2b+1 (In n)"~! f w1
d
<& Z n g, (x+¢&)? o

n<b(M,)

<g?htl Z

n<b(M,e)

(ln l’l)b_l/2 l]/z

n -

For the results of (4.18)—(4.21), are similar considerations to (4.6). Combining with Toeplitz’s lemma,
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we get that
Hy (e) < J1(&) + J2 (&) + In(e)
2b+1 (In n)*~127,/2
n<b(M.e) " (4.22)
Sshine (I )12, /n)
Zn<viney (Inn)P=112/n)

€&

—0,e — 0.

That is, (4.16) is established.
Next, we prove (4.17). Since the proof for Hy,(¢) is the same as the proof for I5,(g), by (4.9)-(4.13),
we get

A}[lm H22(8) = 0, (423)
uniformly for 0 < € < 1/4.

Finally, combining with (2.9) in Lemma 2.4, Markov’s inequality and E [N}’ < oo, for 8 > 2b + 2,
we obtain

2b+1 (Inn)>"12
Hy; =¢ Z —_— \Y (max [W(t)| > x + € VIn n) dx
n 0

n>b) 0<r<1
2b+1 (Inn)’
=2¢ Z G ((x + &) Vin n) dx
nsbe) 0
2b+1 N i (Inn)> [ .
<Ny P(INI 2 2+ 1)(x + &) Vinn) dx
i=0 nsbLe) 0
- : Inn)’ [ E|NP
< 2b+1 _1) ( d
=¢ ;( ) n>bz(1\;1,a) n o i+ 1PA(x+ &)(In n)si2 x
et |0 (=1 (In n)>=#/2 foo 1
<& - dx
ZO: Qi+ 1) ,,Z(A;) n Jy (rep
00 b—B/2
<22 f (In y)*=#/ dy
b(M.g) y

S82b+2_ﬁ(1n (b(M, 8)))b_'6/2+1
:82b+2—ﬁ(M8—2)b—ﬂ/2+1

:Mb+1_'3/2 SN O,M — 0o,

uniformly for 0 < & < 1/4.
From this, combining with (4.22) and (4.23), (4.15) is established. This completes the proof of
Theorem 3.2.

5. Conclusions

The aim of this study is to research the precise asymptotics of independent identically distributed
random variables for complete integral convergence under the sub-linear expectation space. Compared
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with the traditional probability space, the expectation and capacities of sub-linear expectation space are
no longer additive. Moreover, many tools and methods applied to probability space no longer apply
to sub-linear expectation space. Therefore, the methods and tools for studying precise asymptotics in
this paper are different from those for researching precise asymptotics in probability space. In this
paper, our research mainly refers to central limit theorem in (Q, H, E) by Zhang [31], which provides
a powerful tool for our proof process.

We use central limit theorem in (Q,%,E) to prove the precise asymptotics of a sequence of
independent identically distributed random variables under the sub-linear expectation space. The
results of this paper extend the precise asymptotics of complete integral convergence of independent
identically distributed random variables in probability space to sub-linear expectation space. In the
future research, we will further study the precise asymptotics of a wider range of random variables and
explore more precise asymptotics theorems with practical significance.
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