Research article Special Issues

Linear regression of triple diffusive and dual slip flow using Lie Group transformation with and without hydro-magnetic flow

  • These authors contributed equally to this work and are co-first authors
  • Received: 08 July 2022 Revised: 21 October 2022 Accepted: 24 October 2022 Published: 27 December 2022
  • MSC : 76–10, 76R10

  • This study examines the flow of an incompressible flow over a linear stretching surface with the inclusion of momentum and thermal slip conditions. A scaling set of alterations is applied to the governing system for both with and without magnetic field situations. The physical system being leftover invariant caused by some associations surrounded by the transformations. Later we find the absolute invariants 3rd -order ODEs for the linear momentum equation and two 2nd order ODEs consistent with the energy and concentration are obtained. The equations that coincide with the boundary circumstances are elucidated mathematically. The physical pertinent parameters as shown in graphs and the friction factor, Nusselt number and Salts 1 and 2 Sherwood numbers are shown in surface plots. We observed that the momentum slip parameter decelerates the skin friction coefficient in the presence of a magnetic field and enhances in the absence of the magnetic field parameter. The thermal slip parameter enhances the Nusselt number in both the presence and absence of magnetic field parameter. Finally, the thermal and concentration buoyancy ratio parameters are shown to upsurge the friction factor, Nusselt and Salts 1 and 2 Sherwood numbers in both cases of $M = 0$ and $M = 1$.

    Citation: T. Mahesh Kumar, Nehad Ali Shah, V. Nagendramma, P. Durgaprasad, Narsu Sivakumar, B. Madhusudhana Rao, C. S. K. Raju, Se-Jin Yook. Linear regression of triple diffusive and dual slip flow using Lie Group transformation with and without hydro-magnetic flow[J]. AIMS Mathematics, 2023, 8(3): 5950-5979. doi: 10.3934/math.2023300

    Related Papers:

  • This study examines the flow of an incompressible flow over a linear stretching surface with the inclusion of momentum and thermal slip conditions. A scaling set of alterations is applied to the governing system for both with and without magnetic field situations. The physical system being leftover invariant caused by some associations surrounded by the transformations. Later we find the absolute invariants 3rd -order ODEs for the linear momentum equation and two 2nd order ODEs consistent with the energy and concentration are obtained. The equations that coincide with the boundary circumstances are elucidated mathematically. The physical pertinent parameters as shown in graphs and the friction factor, Nusselt number and Salts 1 and 2 Sherwood numbers are shown in surface plots. We observed that the momentum slip parameter decelerates the skin friction coefficient in the presence of a magnetic field and enhances in the absence of the magnetic field parameter. The thermal slip parameter enhances the Nusselt number in both the presence and absence of magnetic field parameter. Finally, the thermal and concentration buoyancy ratio parameters are shown to upsurge the friction factor, Nusselt and Salts 1 and 2 Sherwood numbers in both cases of $M = 0$ and $M = 1$.



    加载中


    [1] S. Lie, Sophus 1884 Differential Invariants Paper (Translation by M. Acherman, Comments by R. Hermann), Math. Sci. Press, Brookline, Mass., 1976.
    [2] L. V. Ovsiannikov, Group analysis of differential equations, Academic Press, New York, 1982. https://doi.org/10.1016/B978-0-12-531680-4.50012-5
    [3] M. M. Bhatti, S. Jun, C. M. Khalique, A. Shahid, L. Fasheng, M. S. Mohamed, Lie group analysis and robust computational approach to examine mass transport process using Jeffrey fluid model, Appl. Math. Comput., 421 (2022), 126936. https://doi.org/10.1016/j.amc.2022.126936 doi: 10.1016/j.amc.2022.126936
    [4] H. sümer, Y. aksoy, Similarity Solutions of a non-Newtonian Fluid's Momentum and Thermal Boundary Layers: Cross Fluid Model, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 22 (2022), 222–239. https://doi:10.35414/akufemubid.1028006
    [5] N. A. Shah, A. Wakif, E. R. El-Zahar, S. Ahmad, S. J Yook, Numerical simulation of a thermally enhanced EMHD flow of a heterogeneous micropolar mixture comprising (60%)-ethylene glycol (EG), (40%)-water (W), and copper oxide nanomaterials (CuO), Case Stud. Therm. Eng., 35 (2022), 102046. https://doi.org/10.1016/j.csite.2022.102046 doi: 10.1016/j.csite.2022.102046
    [6] K. U. Rehman, W. Shatanawi, K. Abodayeh, T. A. M. Shatnawi, A group theoretic analysis of mutual interactions of heat and mass transfer in a thermally slip Semi-Infinite domain, Appl. Sci., 12 (2022). https://doi.org/10.3390/app12042000 doi: 10.3390/app12042000
    [7] V. Nagendramma, P. Durgaprasad, N. Sivakumar, B. M. Rao, C. S. Raju, N. A. Shah, et al., Dynamics of triple diffusive free convective MHD fluid flow: Lie group transformation, Mathematics, 10 (2022), 2456. https://doi.org/10.3390/math10142456 doi: 10.3390/math10142456
    [8] M. J. Babu, Y. S. Rao, A. S. Kumar, C. S. K. Raju, S. A. Shehzad, T. Ambreen, et al., Squeezed flow of polyethylene glycol and water based hybrid nanofluid over a magnetized sensor surface: A statistical approach, Int. Commun. Heat Mass Transf., 135 (2022), 106136. https://doi.org/10.1016/j.icheatmasstransfer.2022.106136. doi: 10.1016/j.icheatmasstransfer.2022.106136
    [9] C. S. K. Raju, N. A. Ahammad, K. Sajjan, N. A. Shah, S. J. Yook, M. D. Kumar, Nonlinear movements of axisymmetric ternary hybrid nanofluids in a thermally radiated expanding or contracting permeable Darcy Walls with different shapes and densities: Simple linear regression, Int. Comm. Heat Mass, 135 (2022), 106110. https://doi.org/10.1016/j.icheatmasstransfer.2022.106110 doi: 10.1016/j.icheatmasstransfer.2022.106110
    [10] P. Rana, M. J. Uddin, Y. Gupta, A. I. M. Ismail, Two-component modeling for non-Newtonian nanofluid slip flow and heat transfer over sheet: Lie group approach, Appl. Math. Mech., 37 (2016), 1325–1340. https://doi.org/10.1007/s10483-016-2140-9 doi: 10.1007/s10483-016-2140-9
    [11] C. H. Amanulla, N. Nagendra, M. S. N. Reddy, Numerical study of thermal and momentum slip effects on MHD Williamson nanofluid from an isothermal sphere, J. Nanofluids, 6 (2017), 1111–1126. https://doi.org/10.1166/jon.2017.1405 doi: 10.1166/jon.2017.1405
    [12] X. Zhang, Y. Yang, T. Li, Y. Zhang, H. Wang, H. Fujita, CMC: A consensus multi-view clustering model for predicting Alzheimer's disease progression, Comput. Meth. Prog. Bio., 199 (2021), 105895. https://doi.org/10.1016/j.cmpb.2020.105895 doi: 10.1016/j.cmpb.2020.105895
    [13] S. Batool, G. Rasool, N. Alshammari, I. Khan, H. Kaneez, N. Hamadneh, Numerical analysis of heat and mass transfer in micropolar nanofluids flow through lid driven cavity: Finite volume approach, Case Stud. Therm. Eng., 37 (2022), 102233. https://doi.org/10.1016/j.csite.2022.102233 doi: 10.1016/j.csite.2022.102233
    [14] A. Maneengam, H. Laidoudi, A. Abderrahmane, G. Rasool, K. Guedri, W. Weera, et al., Entropy generation in 2D Lid-Driven porous container with the presence of obstacles of different shapes and under the influences of Buoyancy and Lorentz Forces, Nanomaterials, 12 (2022), 2206. https://doi.org/10.3390/nano12132206 doi: 10.3390/nano12132206
    [15] M. S. Bhutta, T. Xuebang, S. Akram, C. Yidong, X. Ren, M. Fasehullah, et al., Development of novel hybrid 2D-3D graphene oxide diamond micro composite polyimide films to ameliorate electrical & thermal conduction, J. Ind. Eng. Chem., 114 (2022), 108–114. https://doi.org/10.1016/j.jiec.2022.06.036 doi: 10.1016/j.jiec.2022.06.036
    [16] G. Rasool, N. A. Shah, E. R. El-Zahar, A. Wakif, Numerical investigation of EMHD nanofluid flows over a convectively heated riga pattern positioned horizontally in a Darcy-Forchheimer porous medium: Application of passive control strategy and generalized transfer laws, Waves and Random Complex Media, 2022. https://doi.org/10.1080/17455030.2022.2074571. doi: 10.1080/17455030.2022.2074571
    [17] G. Rasool, A. M. Saeed, I. L. Animasaun, A. Abderrahmane, K. Guedri, et al., Darcy-Forchheimer flow of water conveying multi-walled carbon nanoparticles through a vertical Cleveland Z-Staggered Cavity Subject to entropy generation, Micromachines, 13 (2022), 744. https://doi.org/10.3390/mi13050744 doi: 10.3390/mi13050744
    [18] U. Arif, M. A. Memon, R. S. Saif, A. S. EI-Shafay, M. Nawaz, T. Muhammed, Triple diffusion with heat transfer under different effects on magnetized hyperbolic tangent nanofluid flow, J. P. Mech. Eng., 3 (2022), https://doi.org/10.1177/09544089221079139. doi: 10.1177/09544089221079139
    [19] P. M. Patil, S. Benawadi, B. Shanker, Influence of mixed convection nanofluid flow over a rotating sphere in the presence of diffusion of liquid hydrogen and ammonia, Math. Comp. Simulat., 194 (2022), 764–781. https://doi.org/10.10.1016/j.matcom.2021.12.022 doi: 10.10.1016/j.matcom.2021.12.022
    [20] M. Nawaz, M. Awais, Triple diffusion of species in fluid regime using tangent hyperbolic rheology, J. Therm. Anal. Calorim., 146 (2021), 775–785, https://doi.org/10.1007/s10973-020-10026-0. doi: 10.1007/s10973-020-10026-0
    [21] A. Manjappa, G. B. Jayanna, P. B. Chandrappa, Triple diffusive flow of Casson nanofluid with buoyancy forces and nonlinear thermal radiation over a horizontal plate, Heat Transfer, 47 (2018), 957–973. https://doi.org/10.1002/htj.21360 doi: 10.1002/htj.21360
    [22] P. M. Patil, A. Shashikant, E. Momoniat, C. Harley, Numerical simulation of unsteady triple diffusive mixed convection in NaCl-water and Sucrose-water solutions, Int. J. Heat Mass Transf., 126 (2018), 147–155. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.166 doi: 10.1016/j.ijheatmasstransfer.2018.05.166
    [23] P. M. Patil, A. Shashikant, P. S. Hiremath, Influence of liquid hydrogen and nitrogen on MHD triple diffusive mixed convection nanoliquid flow in presence of surface roughness, Int. J. Hydrog. Energ., 43 (2018), 20101–20117. https://doi.org/10.1016/j.ijhydene.2018.09.033 doi: 10.1016/j.ijhydene.2018.09.033
    [24] P. Y. Xiong, M. Nazeer, F. Hussain, M. I. Khan, A. Saleem, S. Qayyum, et al., Two-phase flow of couple stress fluid thermally effected slip boundary conditions: Numerical analysis with variable liquids properties, Alex. Eng. J., 61 (2022), 3821–3830. https://doi.org/10.1016/j.aej.2021.09.012. doi: 10.1016/j.aej.2021.09.012
    [25] O. A. Bég, T. Bég, W. A. Khan, M. J. Uddin, Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study, Heat Transfer, 51 (2022), 1040–1061. https://doi.org/10.1002/htj.22341. doi: 10.1002/htj.22341
    [26] L. Su, B. He, G. Wang, R. Xiao, W. Yu, Simultaneously developing flow and heat transfer in circular and parallel-plates microchannels with velocity slip and temperature jump, International J. Therm. Sci., 177 (2022), 107590. https://doi.org/10.1016/j.ijthermalsci.2022.107590 doi: 10.1016/j.ijthermalsci.2022.107590
    [27] K. N. Sneha, U. S. Mahabaleshwar, Y. Sheikhnejad, Heat and Mass Transfer of Walters' Liquid B Flow Over A Porous Stretching/Shrinking Plate with Mass Transpiration and Slip, Transport in Porous Media, (2022). https://doi.org/10.1007/s11242-022-01758-8 doi: 10.1007/s11242-022-01758-8
    [28] A. Sabu, A. Wakif, S. Areekara, A. Mathew, N. A. Shah, Significance of nanoparticles' shape and thermo-hydrodynamic slip constraints on mhd alumina-water nanoliquid flows over a rotating heated disk: The passive control approach, Int. Commun. Heat Mass Transf., 129 (2021), 105711. https://doi.org/10.1016/j.icheatmasstransfer.2021.105711 doi: 10.1016/j.icheatmasstransfer.2021.105711
    [29] O. K. Koriko, K. S. Adegbie, N. A. Shah, I. L. Animasaun, M. A. Olotu, Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: The case of blood-gold Carreau nanofluid and dusty fluid, Numer. Meth. Part. D. E., (2021), 1–29. https://doi.org/10.1002/num.22754 doi: 10.1002/num.22754
    [30] E. Seid, E. Hailen, T. Walelign, Multiple slip, Soret and Dufour effects in fluid flow near a vertical stretching sheet in the presence of magnetic nanoparticles, Int. J. Therm., 13 (2022), 100136. https://doi.org/10.1016/j.ijft.2022.100136 doi: 10.1016/j.ijft.2022.100136
    [31] M. Turkyilmazoglu, Velocity Slip and Entropy Generation Phenomena in Thermal Transport Through Metallic Porous Channel, J. Non-Equil. Thermody., 45 (2020). https://doi.org/10.1515/jnet-2019-0097 doi: 10.1515/jnet-2019-0097
    [32] F. L. Paiva, A. R. Secchi, V. Calado, J. Maia, S. Khani, Slip and momentum transfer mechanisms mediated by Janus rods at polymer interfaces, Soft Matter, 16 (2020), 6662–6672. https://doi.org/10.1039/D0SM00858C doi: 10.1039/D0SM00858C
    [33] A. Majeed, F. M. Noori, A. Zeeshan, T. Mahmood, S. U. Rehman, I. Khan, Analysis of activation energy in magnetohydrodynamic flow with chemical reaction and second order momentum slip model, Case Stud. Therm. Eng., 12 (2018), 765–773. https://doi.org/10.1016/j.csite.2018.10.007 doi: 10.1016/j.csite.2018.10.007
    [34] A. Majeed, A. Zeeshan, F. M. Noori, Numerical study of Darcy-Forchheimer model with activation energy subject to chemically reactive species and momentum slip of order two, AIP Adv., 9 (2019), 045035. https://doi.org/10.1063/1.5095546 doi: 10.1063/1.5095546
    [35] M. Ferdows, M. J. Uddin, A. A. Afify, Scaling group transformation for MHD boundary layer free convective heat and mass transfer flow past a convectively heated nonlinear radiating stretching sheet, Int. J. Heat Mass Transf., 56 (2013), 181–187.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1329) PDF downloads(73) Cited by(0)

Article outline

Figures and Tables

Figures(31)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog