Research article

Sharp weak bounds for discrete Hardy operator on discrete central Morrey spaces

  • Received: 09 September 2022 Revised: 19 November 2022 Accepted: 01 December 2022 Published: 12 December 2022
  • MSC : 42B20, 42B25, 42B35

  • In this note, we introduce the discrete (weak) central Morrey spaces, which are central versions of discrete (weak) Morrey spaces. The sharp bounds for discrete Hardy operator from discrete central Morrey spaces to discrete weak central Morrey spaces are proven to be equal to 1. As an application, we obtain the weak version of the well-known discrete Hardy inequality.

    Citation: Mingquan Wei, Xiaoyu Liu. Sharp weak bounds for discrete Hardy operator on discrete central Morrey spaces[J]. AIMS Mathematics, 2023, 8(2): 5007-5015. doi: 10.3934/math.2023250

    Related Papers:

  • In this note, we introduce the discrete (weak) central Morrey spaces, which are central versions of discrete (weak) Morrey spaces. The sharp bounds for discrete Hardy operator from discrete central Morrey spaces to discrete weak central Morrey spaces are proven to be equal to 1. As an application, we obtain the weak version of the well-known discrete Hardy inequality.



    加载中


    [1] G. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. http://dx.doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
    [2] W. Faris, Weak Lebesgue spaces and quantum mechanical binding, Duke Math. J., 43 (1976), 365–373. http://dx.doi.org/10.1215/S0012-7094-76-04332-5 doi: 10.1215/S0012-7094-76-04332-5
    [3] M. Christ, L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc., 123 (1995), 1687–1693. http://dx.doi.org/10.2307/2160978 doi: 10.2307/2160978
    [4] S. Lu, D. Yan, F. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl., 2013 (2013), 148. http://dx.doi.org/10.1186/1029-242X-2013-148 doi: 10.1186/1029-242X-2013-148
    [5] S. Wang, S. Lu, D. Yan, Explicit constants for Hardy's inequality with power weight on $n$-dimensional product spaces, Sci. China Math., 55 (2012), 2469–2480. http://dx.doi.org/10.1007/s11425-012-4453-4 doi: 10.1007/s11425-012-4453-4
    [6] M. Wei, D. Yan, Sharp bounds for Hardy operators on product spaces, Acta Math. Sci., 38 (2018), 441–449. http://dx.doi.org/10.1016/S0252-9602(18)30759-8 doi: 10.1016/S0252-9602(18)30759-8
    [7] Z. Fu, L. Grafakos, S. Lu, F. Zhao, Sharp bounds for $m$-linear Hardy and Hilbert operators, Houston J. Math., 38 (2012), 225–244.
    [8] T. Batbold, Y. Sawano, G. Tumendemberel, Sharp bounds for certain $m$-linear integral operators on $p$-adic function spaces, Filomat, 36 (2022), 801–812. http://dx.doi.org/10.2298/FIL2203801B doi: 10.2298/FIL2203801B
    [9] N. Chuong, N. Hong, H. Hung, Bounds of weighted multilinear Hardy-Cesàro operators in $p$-adic functional spaces, Front. Math. China, 13 (2018), 1–24. http://dx.doi.org/10.1007/s11464-017-0677-5 doi: 10.1007/s11464-017-0677-5
    [10] Y. Deng, D. Yan, M. Wei, Sharp estimates for $m$ linear $p$-adic Hardy and Hardy-Littlewood-Pólya operators on $p$-adic central Morrey spaces, J. Math. Inequal., 15 (2021), 1447–1458. http://dx.doi.org/10.7153/jmi-2021-15-99 doi: 10.7153/jmi-2021-15-99
    [11] Z. Fu, Q. Wu, S. Lu, Sharp estimates of $p$-adic Hardy and Hardy-Littlewood-Pólya operators, Acta. Math. Sin.-English Ser., 29 (2013), 137–150. http://dx.doi.org/10.1007/s10114-012-0695-x doi: 10.1007/s10114-012-0695-x
    [12] H. Hung, The $p$-adic weighted Hardy-Cesàro operator and an application to discrete Hardy inequalities, J. Math. Anal. Appl., 409 (2014), 868–879. http://dx.doi.org/10.1016/j.jmaa.2013.07.056 doi: 10.1016/j.jmaa.2013.07.056
    [13] Q. Wu, Z. Fu, Sharp estimates of $m$-linear $p$-adic Hardy and Hardy-Littlewood-Pólya operators, J. Appl. Math., 2011 (2011), 472176. http://dx.doi.org/10.1155/2011/472176 doi: 10.1155/2011/472176
    [14] J. Chu, Z. Fu, Q. Wu, $L^p$ and BMO bounds for weighted Hardy operators on the Heisenberg group, J. Inequal. Appl., 2016 (2016), 282. http://dx.doi.org/10.1186/s13660-016-1222-x doi: 10.1186/s13660-016-1222-x
    [15] Y. Deng, X. Zhang, D. Yan, M. Wei, Weak and strong estimates for linear and multilinear fractional Hausdorff operators on the Heisenberg group, Open Math., 19 (2021), 316–328. http://dx.doi.org/10.1515/math-2021-0016 doi: 10.1515/math-2021-0016
    [16] S. Volosivets, Weighted Hardy and Cesàro operators on Heisenberg group and their norms, Integr. Transf. Spec. F., 28 (2017), 940–952. http://dx.doi.org/10.1080/10652469.2017.1392946 doi: 10.1080/10652469.2017.1392946
    [17] D. Fan, F. Zhao, Sharp constant for multivariate Hausdorff $q$-inequalities, J. Aust. Math. Soc., 106 (2019), 274–286. http://dx.doi.org/10.1017/S1446788718000113 doi: 10.1017/S1446788718000113
    [18] J. Guo, F. Zhao, Some q-inequalities for Hausdorff operators, Front. Math. China, 12 (2017), 879–889. http://dx.doi.org/10.1007/s11464-017-0622-7 doi: 10.1007/s11464-017-0622-7
    [19] L. Maligranda, R. Oinarov, L. Persson, On Hardy $q$-inequalities, Czech. Math. J., 64 (2014), 659–682. http://dx.doi.org/10.1007/s10587-014-0125-6 doi: 10.1007/s10587-014-0125-6
    [20] F. Zhao, Z. Fu, S. Lu, Endpoint estimates for $n$-dimensional Hardy operators and their commutators, Sci. China Math., 55 (2012), 1977–1990. http://dx.doi.org/10.1007/s11425-012-4465-0 doi: 10.1007/s11425-012-4465-0
    [21] G. Gao, F. Zhao, Sharp weak bounds for Hausdorff operators, Anal. Math., 41 (2015), 163–173. http://dx.doi.org/10.1007/s10476-015-0204-4 doi: 10.1007/s10476-015-0204-4
    [22] G. Gao, X. Hu, C. Zhang, Sharp weak estimates for Hardy-type operators, Ann. Funct. Anal., 7 (2016), 421–433. http://dx.doi.org/10.1215/20088752-3605447 doi: 10.1215/20088752-3605447
    [23] H. Yu, J. Li, Sharp weak bounds for $n$-dimensional fractional Hardy operators, Front. Math. China, 13 (2018), 449–457. http://dx.doi.org/10.1007/s11464-018-0685-0 doi: 10.1007/s11464-018-0685-0
    [24] A. Hussain, N. Sarfraz, F. Gurbuz, Sharp weak bounds for $p$-adic Hardy operators on $p$-adic linear spaces, Commun. Fac. Sci. Univ., 71 (2022), 919–929. http://dx.doi.org/10.31801/cfsuasmas.1076462 doi: 10.31801/cfsuasmas.1076462
    [25] N. Sarfraz, F. Gürbüz, Weak and strong boundedness for $p$-adic fractional Hausdorff operator and its commutator, Int. J. Nonlin. Sci. Num., in press, http://dx.doi.org/10.1515/ijnsns-2020-0290
    [26] A. Kufner, L. Maligranda, L. Persson, The prehistory of the Hardy inequality, The American Mathematical Monthly, 113 (2006), 715–732. http://dx.doi.org/10.1080/00029890.2006.11920356 doi: 10.1080/00029890.2006.11920356
    [27] C. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc., 43 (1938), 126–166. http://dx.doi.org/10.2307/1989904 doi: 10.2307/1989904
    [28] J. Alvárez, J. Lakey, M. Guzmán-Partida, Spaces of bounded $\lambda$-central mean oscillation, Morrey spaces, and $\lambda$-central Carleson measures, Collect. Math., 51 (2000), 1–47.
    [29] Z. Fu, S. Lu, H. Wang, L. Wang, Singular integral operators with rough kernels on central Morrey spaces with variable exponent, Ann. Acad. Sci. Fenn. M., 44 (2019), 505–522. http://dx.doi.org/10.5186/aasfm.2019.4431 doi: 10.5186/aasfm.2019.4431
    [30] K. Ho, Atomic decomposition of Hardy-Morrey spaces with variable exponents, Ann. Acad. Sci. Fenn. M., 40 (2015), 31–62. http://dx.doi.org/10.5186/aasfm.2015.4002 doi: 10.5186/aasfm.2015.4002
    [31] K. Ho, Singular integral operators with rough kernel on Morrey type spaces, Stud. Math., 244 (2019), 217–243. http://dx.doi.org/10.4064/sm8390-8-2017 doi: 10.4064/sm8390-8-2017
    [32] Y. Sawano, S. Sugano, H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal., 36 (2012), 517–556. http://dx.doi.org/10.1007/s11118-011-9239-8 doi: 10.1007/s11118-011-9239-8
    [33] J. Tao, D. C. Yang, D. Y. Yang, Boundedness and compactness characterizations of Cauchy integral commutators on Morrey spaces, Math. Method. Appl. Sci., 42 (2019), 1631–1651. https://doi.org/ http://dx.doi.org/10.1002/mma.5462 doi: 10.1002/mma.5462
    [34] H. Wang, J. Xu, J. Tan, Boundedness of multilinear singular integrals on central Morrey spaces with variable exponents, Front. Math. China, 15 (2020), 1011–1034. http://dx.doi.org/10.1007/s11464-020-0864-7 doi: 10.1007/s11464-020-0864-7
    [35] H. Gunawan, D. Hakim, M. Idris, On inclusion properties of discrete Morrey spaces, Georgian Math. J., 29 (2022), 37–44. http://dx.doi.org/10.1515/gmj-2021-2122 doi: 10.1515/gmj-2021-2122
    [36] H. Gunawan, E. Kikianty, Y. Sawano, C. Schwanke, Three geometric constants for Morrey spaces, Bull. Korean Math. Soc., 56 (2019), 1569–1575. http://dx.doi.org/10.4134/BKMS.b190010 doi: 10.4134/BKMS.b190010
    [37] H. Gunawan, E. Kikianty, C. Schwanke, Discrete Morrey spaces and their inclusion properties, Math. Nachr., 291 (2018), 1283–1296. http://dx.doi.org/10.1002/mana.201700054 doi: 10.1002/mana.201700054
    [38] H. Gunawan, C. Schwanke, The Hardy-Littlewood maximal operator on discrete Morrey spaces, Mediterr. J. Math., 16 (2019), 24. http://dx.doi.org/10.1007/s00009-018-1277-7 doi: 10.1007/s00009-018-1277-7
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(985) PDF downloads(56) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog