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1. Introduction

Let f be a locally integrable function on (0,∞). The classical Hardy operator H is defined by

H( f )(x) =
1
x

∫ x

0
f (t)dt,

where x ∈ (0,∞).
The well-known Hardy inequality yields that for 1 < p < ∞ and any locally integrable function f

on (0,∞) such that

‖ f ‖Lp(0,∞) =

(∫ ∞

0
| f (x)|pdx

)1/p

< ∞,

there holds
‖H( f )‖Lp(0,∞) ≤

p
p − 1

‖ f ‖Lp(0,∞),

where the constant p
p−1 is optimal, see [1] for the details.
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In 1976, the Hardy operator was extended to higher dimension by Faris [2]. Later, Christ and
Grafakos [3] obtained a refined definition of the n-dimensional Hardy operator

H( f )(x) =
1

Ωn|x|n

∫
|y|<|x|

f (y)dy, x ∈ Rn\{0},

where f is a locally measurable function on Rn and Ωn = πn/2

Γ(1+n/2) is the volume of the unit ball in
Rn. Moreover, Christ and Grafakos proved that the operator norm of H on Lp(Rn) (1 < p < ∞) is
also p

p−1 . Since then, the sharp estimates for Hardy-type operators have been built on different function
spaces. For example, Lu et al. [4], Wang et al. [5], Wei and Yan [6] established the sharp estimates for
product Hardy-type operators on product spaces. Moreover, Fu et al. [7] derived the sharp constants
for linear and multilinear Hardy operators on Morrey-type spaces. Other than the Euclid space, the
sharp constants for Hardy-type operators were also established on p-adic field [8–13], Heisenberg
group [14–16], and q-calculus [17–19].

Note that, in [20], Zhao et al. obtained the sharp weak (p, p) bound for H . We give the result in
details for the reader’s convenience.

Theorem 1.1. For 1 ≤ p ≤ ∞ and f ∈ Lp(Rn), we have

‖H( f )‖Lp,∞ ≤ 1 · ‖ f ‖Lp ,

where the bound 1 is best possible.

In the above, for 0 < p < ∞, the Lebesgue space Lp(Rn) contains all locally integrable functions f
on Rn such that

‖ f ‖Lp =

(∫
Rn
| f (x)|pdx

)1/p

< ∞,

and the weak Lebesgue space Lp,∞(Rn) consists of all locally integrable functions f on Rn such that

‖ f ‖Lp,∞ = sup
λ>0

λ|{x ∈ Rn : | f (x)| > λ}|1/p < ∞, (1.1)

where |E| denotes the Lebesgue measure of the measurable set E ⊆ Rn. In addition, the space L∞(Rn)
is the collection of all measurable functions f on Rn such that ‖ f ‖L∞ = ess supx∈Rn | f (x)| < ∞. We also
denote by L∞,∞(Rn) = L∞(Rn).

In fact, when n = 1, Theorem 1.1 implies that the sharp constant for H from Lp(0,∞) to Lp,∞(0,∞)
also equals to 1. Here the space Lp,∞(0,∞) is defined by (1.1) except that we use (0,∞) instead of Rn

there.
Recently, much attention has been paid to the sharp weak bounds for Hardy-type operators. For

instance, Gao and Zhao [21], Gao et al. [22], Yu and Li [23] gave the sharp weak estimates for Hardy-
type operators on (power-weighted) Lebesgue spaces. Moreover, Gao et al. [22] calculated the sharp
constants for Hardy operator on central Morrey spaces. We also refer the readers to [24, 25] for the
sharp weak bounds for p-adic Hardy-type operators on p-adic Lebesgue spaces.

On the other hand, the discrete version of Hardy inequality is also of great importance. The discrete
Hardy inequality (see, for instance, [1, 26]) shows that if p > 1 and {ak}

∞
1 is a sequence of nonnegative

real numbers, then
∞∑

n=1

1
n

n∑
k=1

ak

p

≤

(
p

p − 1

)p ∞∑
n=1

ap
n . (1.2)
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Moreover, the constant in (1.2) is the best possible one.
Similar to the Lebesgue spaces in Euclidean space, the discrete Lebesgue space lp(N) (here and

hereafter, N is the collection of all positive integers) consists of all sequences ~a = {ak}
∞
1 of real numbers

such that

‖~a‖lp =

 ∞∑
n=1

ap
n

1/p

< ∞ (1.3)

if 0 < p < ∞, and for p = ∞, we denote by l∞(N) the set of all sequences ~a = {ak}
∞
1 of real numbers

such that
‖~a‖l∞ = sup

n∈N
{|an|} < ∞.

We also define the discrete version of Hardy operator h as

h(~a)(n) =
1
n

n∑
k=1

ak (1.4)

for all senquences ~a = {ak}
∞
1 of real numbers.

Using the notations in (1.3) and (1.4), the discrete Hardy inequality (1.2) can be rewritten as

‖h(~a)‖lp ≤
p

p − 1
‖~a‖lp , (1.5)

for all sequences ~a = {ak}
∞
1 such that ~a ∈ lp(N). Moreover, the constant in (1.5) is optimal.

In view of the sharp weak estimates for continuous Hardy operator H on Lebesgue spaces, it is
natural to ask whether we can obtain the boundedness, or moreover, the sharp constants for discrete
Hardy operator h from discrete Lebesgue spaces to discrete weak Lebesgue spaces. Here the discrete
weak Lebesgue space lp,∞(N) (1 ≤ p < ∞) consists of all sequences ~a = {ak}

∞
1 of real numbers such

that
‖~a‖lp,∞ = sup

γ>0
γ

(
]{n : |an| > γ}

)1/p
< ∞,

where ]E denotes the number of integers of the set E. In addition, for p = ∞, we denote by l∞,∞(N) =

l∞(N).
In this paper, we will give an affirmative answer to the above question. More generally, we will

consider the weak type estimates for discrete Hardy operator in a more general setting. To get a better
understanding of our main result in this paper, we need the definition of the weak central Morrey space
and its weak version.

The classical Morrey spaces, initially introduced by Morrey [27], play an important role in harmonic
analysis and partial differential equations. Moreover, the central version of Morrey spaces are also well
used to study the mapping properties of various important integral operators in harmonic analysis. We
refer the readers to [28–34] for the studies of Morrey-type spaces. Note that in [35–37], Gunawan
et al. initially introduced the discrete version of Morrey spaces and gave some basic properties for
these spaces, see also [38] for the mapping properties of discrete Hardy-Littlewood maximal operator
and discrete fractional integral operator on discrete Morrey spaces. Inspire by [37], we now give the
definition of discrete central Morrey spaces as follows.

AIMS Mathematics Volume 8, Issue 2, 5007–5015.
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Definition 1.1. Let 1 ≤ p < ∞ and − 1
p ≤ λ < 0. The discrete central Morrey space ṁp,λ(N) is defined

by
ṁp,λ(N) = {~a = {ak}

∞
1 : ‖~a‖ṁp,λ < ∞},

where
‖~a‖ṁp,λ = sup

n∈N
n−(λ+1/p)

∥∥∥∥ ~An
∥∥∥∥

lp
,

in which ~An = {An
k}
∞
1 is the n-truncation sequence of the sequence ~a = {ak}

∞
1 , i.e.,

An
k =

{
ak, 1 ≤ k ≤ n,
0, k > n.

(1.6)

By definition, the discrete central Morrey spaces can be viewed as the central version of the discrete
Morrey spaces studied in [37]. Similarly, one can define the discrete weak central Morrey space
wṁp,λ(N):

Definition 1.2. Let 1 ≤ p < ∞ and − 1
p ≤ λ < 0. The discrete weak central Morrey space wṁp,λ(N) is

defined by
wṁp,λ(N) = {~a = {ak}

∞
1 : ‖a‖wṁp,λ < ∞},

where
‖~a‖wṁp,λ = sup

n∈N
n−(λ+1/p)

∥∥∥∥ ~An
∥∥∥∥

lp,∞
,

in which ~An is the same as in (1.6).

Obviously, if we take λ = −1/p in Definitions 1.1 and 1.2, then we recover the discrete Lebesgue
space lp(N) and the discrete weak Lebesgue space lp,∞(N).

In the following section, we will establish the sharp weak estimates for discrete Hardy operator
on discrete central Morrey spaces. As an application, we obtain the sharp bounds for discrete Hardy
operator from discrete Lebesgue spaces to discrete weak Lebesgue spaces.

2. Main result

The main result in this paper is the following:

Theorem 2.1. Let 1 ≤ p < ∞ and − 1
p ≤ λ < 0. The for ~a = {ak}

∞
1 ∈ ṁp,λ(N), we have

‖h(~a)‖wṁp,λ ≤ 1 · ‖~a‖ṁp,λ . (2.1)

Moreover, the constant 1 in (2.1) is the best possible one.

Proof. By using discrete Hölder’s inequality, for all n ∈ N, we get

|h(~a)(n)| ≤
1
n

∥∥∥∥ ~An
∥∥∥∥

lp
× n1/p′

=nλn−(λ+1/p)
∥∥∥∥ ~An

∥∥∥∥
lp

= nλ‖ f ‖ṁp,λ ,

where ~An is recognized as in (1.6) and p′ is the conjugate exponent of p, i.e., 1/p + 1/p′ = 1.

AIMS Mathematics Volume 8, Issue 2, 5007–5015.
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In view of λ < 0, we have

‖h(~a)‖wṁp,λ ≤ sup
n∈N

sup
γ>0

γn−(λ+1/p)
(
]{m ∈ [1, n] : mλ‖ f ‖ṁp,λ > γ}

)1/p

= sup
n∈N

sup
γ>0

γn−(λ+1/p)

]
m ∈ [1, n] : m <

(
γ

‖ f ‖ṁp,λ

)1/λ

1/p

.

Now we devide our discussion into two cases.

Case I. 1 ≤ n ≤
(

γ

‖ f ‖ṁp,λ

)1/λ
. Noting that λ < 0, we have

sup
γ>0

sup
1≤n≤

(
γ

‖ f ‖
ṁp,λ

)1/λ
γn−(λ+1/p)

]
m ∈ [1, n] : m <

(
γ

‖ f ‖ṁp,λ

)1/λ

1/p

≤ sup
γ>0

sup
1≤n≤

(
γ

‖ f ‖
ṁp,λ

)1/λ
γn−λ ≤ ‖ f ‖ṁp,λ .

Csae II. n >
(

γ

‖ f ‖ṁp,λ

)1/λ
. Since λ < 0, there holds

sup
γ>0

sup
n>

(
γ

‖ f ‖
ṁp,λ

)1/λ
γn−(λ+1/p)

]
m ∈ [1, n] : m <

(
γ

‖ f ‖ṁp,λ

)1/λ

1/p

≤ sup
γ>0

sup
n>

(
γ

‖ f ‖
ṁp,λ

)1/λ
γn−(λ+1/p)

(
γ

‖ f ‖ṁp,λ

) 1
pλ

≤ ‖ f ‖ṁp,λ .

Combining all the estimates for Case I and Case II, we arrive at

‖h(~a)‖wṁp,λ ≤ 1 · ‖~a‖ṁp,λ .

It remains to show the constant in (2.1) is optimal. To this end, we choose a sequence ~̄a = {āk}
∞
1 such

that

āk =

{
1, k = 1,
0, k = 2, 3, . . .

We claim that ~̄a ∈ ṁp,λ(N) and ∥∥∥~̄a∥∥∥
ṁp,λ = 1. (2.2)

In fact, for any n ∈ N, we have ∥∥∥∥∥−→Ān
∥∥∥∥∥p

lp
=

n∑
k=1

|āk|
p = 1,

where
−→
Ān is recognized as in (1.6).
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Since −1/p ≤ λ < 0, by the definition of ṁp,λ(N), we get∥∥∥~̄a∥∥∥
ṁp,λ = sup

n∈N
n−(λ+1/p)

∥∥∥∥∥−→Ān
∥∥∥∥∥

lp
= sup

n∈N
n−(λ+1/p) = 1.

By a simple calculation, one has

h
(
~̄a
)

(n) =
1
n

for all n ∈ N. Therefore,∥∥∥∥h
(
~̄a
)
χ{1}

∥∥∥∥
lp,∞

= sup
0<γ<1

γ (]{k ∈ {1} : 1/k > γ})1/p = sup
0<γ<1

γ = 1. (2.3)

As a consequence of (2.3) and the definition of discrete weak Morrey spaces, we obtain∥∥∥∥h
(
~̄a
)∥∥∥∥

wṁp,λ
= sup

n∈N
n−(λ+1/p)

∥∥∥∥h
(
~̄a
)
χ[1,n]

∥∥∥∥
lp,∞

≥1−(λ+1/p)
∥∥∥∥h

(
~̄a
)
χ{1}

∥∥∥∥
lp,∞

= 1. (2.4)

Moreover, by using the boundednness of h on discrete central Morrey spaces proved above, there
holds ∥∥∥∥h

(
~̄a
)∥∥∥∥

wṁp,λ
≤ 1 ·

∥∥∥~̄a∥∥∥
wṁp,λ = 1. (2.5)

Combining (2.4) with (2.5), we arrive at∥∥∥∥h
(
~̄a
)∥∥∥∥

wṁp,λ
= 1,

which together with (2.2) yields that ∥∥∥∥h
(
~̄a
)∥∥∥∥

wṁp,λ
=

∥∥∥~̄a∥∥∥
ṁp,λ .

Consequently, the constant 1 in (2.1) is best possible. we are done.
�

The following corollary can be seen as the weak version of the well-known discrete Hardy
inequality.

Corollary 2.1. Let 1 ≤ p ≤ ∞. The for ~a = {ak}
∞
1 ∈ lp(N), we have

‖h(~a)‖lp,∞ ≤ 1 · ‖~a‖lp . (2.6)

Moreover, the constant 1 in (2.6) is the best possible one.

Proof. The case 1 ≤ p < ∞ is a direct consequence of Theorem 2.1 by taking λ = −1/p. For p = ∞,
it is obvious that ‖h(~a)‖l∞ ≤ 1 · ‖~a‖l∞ . On the other hand, by taking ~̄a = {āk}

∞
1 such that āk = 1 for all

k ∈ N, there holds
∥∥∥∥h

(
~̄a
)∥∥∥∥

l∞
=

∥∥∥~̄a∥∥∥
l∞

= 1. The proof is finished. �
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