Research article Special Issues

Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces

  • Received: 01 September 2023 Revised: 27 October 2023 Accepted: 05 November 2023 Published: 10 November 2023
  • MSC : 35K57, 35B40, 35B41, 45K05

  • In this paper, we consider the asymptotic behavior of nonclassical diffusion equations with hereditary memory and time-dependent perturbed parameter on whole space $ \mathbb{R}^n $. Under a general assumption on the memory kernel $ k $, the existence and regularity of time-dependent global attractors are proven using a new analytical technique. It is remarkable that the nonlinearity $ f $ has no restriction on the upper growth.

    Citation: Ke Li, Yongqin Xie, Yong Ren, Jun Li. Pullback attractors for the nonclassical diffusion equations with memory in time-dependent spaces[J]. AIMS Mathematics, 2023, 8(12): 30537-30561. doi: 10.3934/math.20231561

    Related Papers:

  • In this paper, we consider the asymptotic behavior of nonclassical diffusion equations with hereditary memory and time-dependent perturbed parameter on whole space $ \mathbb{R}^n $. Under a general assumption on the memory kernel $ k $, the existence and regularity of time-dependent global attractors are proven using a new analytical technique. It is remarkable that the nonlinearity $ f $ has no restriction on the upper growth.



    加载中


    [1] S. Gatti, A. Miranville, V. Pata, S. Zelik, Attractors for semi-linear equations of viscoelasticity with very low dissipation, Rocky Mountain J. Math., 38 (2008), 1117–1138. https://doi.org/10.1216/RMJ-2008-38-4-1117 doi: 10.1216/RMJ-2008-38-4-1117
    [2] T. T. Le, D. T. Nguyen, The nonclassical diffusion equations with time-dependent memory kernels and a new class of nonlinearities, Glasg. Math. J., 64 (2022), 716–733. https://doi.org/10.1002/mma.6791 doi: 10.1002/mma.6791
    [3] T. T. Le, D. T. Nguyen, Uniform attractors of nonclassical diffusion equations on $\mathbb{R}^N$ with memory and singularly oscillating external forces, Math. Methods Appl. Sci., 44 (2021), 820–852. https://doi.org/10.1002/mma.6791 doi: 10.1002/mma.6791
    [4] Z. Xie, J. W. Zhang, Y. Q. Xie, Asymptotic behavior of quasi-linear evolution equations on time-dependent product spaces, Discrete Contin. Dyn. Syst. B, 28 (2023), 2316–2334. https://doi.org/10.3934/dcdsb.2022171 doi: 10.3934/dcdsb.2022171
    [5] Y. Q. Xie, D. Liu, J. W. Zhang, X. M. Liu, Uniform attractors for nonclassical diffusion equations with perturbed parameter and memory, J. Math. Phys., 64 (2023), 022701. https://doi.org/10.1063/5.0068029 doi: 10.1063/5.0068029
    [6] J. Wang, Q. Z. Ma, W. X. Zhou, Attractor of the nonclassical diffusion equation with memory on time-dependent space, AIMS Math., 8 (2023), 14820–14841. https://doi.org/10.3934/math.2023757 doi: 10.3934/math.2023757
    [7] C. M. Dafermos, Asymptotic stability in viscoelasticity, Arch. Rational Mech. Anal., 37 (1970), 297–308. https://doi.org/10.1007/BF00251609 doi: 10.1007/BF00251609
    [8] P. J. Chen, M. E. Gurtin, On a theory of heat conduction involving two temperatures, Z. Angew. Math. Phys., 19 (1968), 614–627. https://doi.org/10.1007/BF01594969 doi: 10.1007/BF01594969
    [9] G. I. Barenblatt, I. P. Zheltov, I. N. Kochina, Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, J. Appl. Math. Mech., 24 (1960), 1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6 doi: 10.1016/0021-8928(60)90107-6
    [10] E. C. Aifantis, On the problem of diffusion in solids, Acta Mech., 37 (1980), 265–296. https://doi.org/10.1007/BF01202949 doi: 10.1007/BF01202949
    [11] J. Jäckle, Heat conduction and relaxation in liquids of high viscosity, Phys. A, 162 (1990), 377–404. https://doi.org/10.1016/0378-4371(90)90424-Q doi: 10.1016/0378-4371(90)90424-Q
    [12] C. T. Anh, N. D. Toan, Nonclassical diffusion equations on $\mathbb{R}^N$ with singularly oscillating external forces, Appl. Math. Lett., 38 (2014), 20–26. https://doi.org/10.1016/j.aml.2014.06.008 doi: 10.1016/j.aml.2014.06.008
    [13] M. Conti, E. M. Marchini, A remark on nonclassical diffusion equations with memory, Appl. Math. Optim., 73 (2016), 1–21. https://doi.org/10.1007/s00245-015-9290-8 doi: 10.1007/s00245-015-9290-8
    [14] M. Conti, E. M. Marchini, V. Pata, Nonclassical diffusion with memory, Math. Methods Appl. Sci., 38 (2015), 948–958. https://doi.org/10.1002/mma.3120 doi: 10.1002/mma.3120
    [15] J. W. Zhang, Y. Q. Xie, Asymptotic behavior for a class of viscoelastic equations with memory lacking instantaneous damping, AIMS Math., 6 (2021), 9491–9509. https://doi.org/10.3934/math.2021552 doi: 10.3934/math.2021552
    [16] V. Pata, A. Zucchi, Attractors for a damped hyperbolic equation with linear memory, Adv. Math. Sci. Appl., 11 (2001), 505–529.
    [17] J. W. Zhang, Y. Q. Xie, Q. Q. Luo, Z. P. Tang, Asymptotic behavior for the semi-linear reaction-diffusion equations with memory, Adv. Differ. Equ., 2019 (2019), 510. https://doi.org/10.1186/s13662-019-2399-3 doi: 10.1186/s13662-019-2399-3
    [18] V. V. Chepyzhov, A. Miranville, On trajectory and global attractors for semilinear heat equations with fading memory, Indiana Univ. Math. J., 55 (2006), 119–168. https://doi.org/10.1512/iumj.2006.55.2597 doi: 10.1512/iumj.2006.55.2597
    [19] J. B. Yuan, S. X. Zhang, Y. Q. Xie, J. W. Zhang, Exponential attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, AIMS Math., 6 (2021), 11778–11795. https://doi.org/10.3934/math.2021684 doi: 10.3934/math.2021684
    [20] C. Y. Sun, M. H. Yang, Dynamics of the nonclassical diffusion equation, Asymptot. Anal., 59 (2008), 51–81. https://doi.org/10.3233/ASY-2008-0886 doi: 10.3233/ASY-2008-0886
    [21] Y. L. Xiao, Attractors for a nonclassical diffusion equation, Acta Math. Appl. Sinca, 18 (2002), 273–276. https://doi.org/10.1007/s102550200026 doi: 10.1007/s102550200026
    [22] J. W. Zhang, Z. M. Liu, J. H. Huang, Upper semicontinuity of optimal attractors for viscoelastic equations lacking strong damping, Appl. Anal., 102 (2023), 3609–3628. https://doi.org/10.1080/00036811.2022.2088532 doi: 10.1080/00036811.2022.2088532
    [23] Y. Q. Xie, Q. S. Li, K. X. Zhu, Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity, Nonlinear Anal. Real World Appl., 31 (2016), 23–37. https://doi.org/10.1016/j.nonrwa.2016.01.004 doi: 10.1016/j.nonrwa.2016.01.004
    [24] J. W. Zhang, Z. M. Liu, J. H. Huang, Weak mean random attractors for nonautonomous stochastic parabolic equation with variable exponents, Stoch. Dyn., 23 (2023), 2350019. https://doi.org/10.1142/S0219493723500193 doi: 10.1142/S0219493723500193
    [25] J. W. Zhang, Z. M. Liu, J. H. Huang, Upper semicontinuity of pullback $\mathscr{D}$-attractors for nonlinear parabolic equation with nonstandard growth condition, Math. Nachr., 2023, 1–24. https://doi.org/10.1002/mana.202100527
    [26] E. S. Baranovskii, Strong solutions of the incompressible Navier-Stokes-Voigt model, Mathematics, 8 (2020), 181. https://doi.org/10.3390/math8020181 doi: 10.3390/math8020181
    [27] T. Ding, Y. F. Liu, Time-dependent global attractor for the nonclassical diffusion equation, Appl. Anal., 94 (2015), 1439–1449. https://doi.org/10.1080/00036811.2014.933475 doi: 10.1080/00036811.2014.933475
    [28] Q. Z. Ma, X. P. Wang, L. Xu, Existence and regularity of time-dependent global attractors for the nonclassical reaction-diffusion equations with lower forcing term, Bound. Value Probl., 2016 (2016), 1–11. https://doi.org/10.1186/s13661-015-0513-3 doi: 10.1186/s13661-015-0513-3
    [29] J. Wang, Q. Z. Ma, Asymptotic dynamic of the nonclassical diffusion equation with time-dependent coefficient, J. Appl. Anal. Comput., 11 (2021), 445–463. https://doi.org/10.11948/20200055 doi: 10.11948/20200055
    [30] J. B. Yuan, S. X. Zhang, Y. Q. Xie, J. W. Zhang, Attractors for a class of perturbed nonclassical diffusion equations with memory, Discrete Contin. Dyn. Syst. B, 27 (2022), 4995–5007. https://doi.org/10.3934/dcdsb.2021261 doi: 10.3934/dcdsb.2021261
    [31] Y. Q. Xie, J. Li, K. X. Zhu, Upper semicontinuity of attractors for nonclassical diffusion equations with arbitrary polynomial growth, Adv. Differ. Equ., 2021 (2021), 1–17. https://doi.org/10.1186/s13662-020-03146-2 doi: 10.1186/s13662-020-03146-2
    [32] K. X. Zhu, Y. Q. Xie, F. Zhou, Attractors for the nonclassical reaction-diffusion equations on time-dependent spaces, Bound. Value Probl., 2020 (2020), 1–14. https://doi.org/10.1186/s13661-020-01392-7 doi: 10.1186/s13661-020-01392-7
    [33] M. Conti, F. Dell'Oro, V. Pata, Nonclassical diffusion with memory lacking instantaneous damping, Commun. Pure Appl. Anal., 19 (2020), 2035–2050. https://doi.org/10.3934/cpaa.2020090 doi: 10.3934/cpaa.2020090
    [34] N. D. Toan, Uniform attractors of nonclassical diffusion equations lacking instantaneous damping on $\mathbb {R}^{N} $ with memory, Acta Appl. Math., 170 (2020), 789–822. https://doi.org/10.1007/s10440-020-00359-1 doi: 10.1007/s10440-020-00359-1
    [35] F. J. Meng, M. H. Yang, C. K. Zhong, Attractors for wave equation with nonlinear damping on time-dependent space, Discrete Contin. Dyn. Syst. B, 21 (2016), 205–225. https://doi.org/10.3934/dcdsb.2016.21.205 doi: 10.3934/dcdsb.2016.21.205
    [36] M. Conti, V. Pata, Asymptotic structure of the attractor for processes on time-dependent spaces, Nonlinear Anal. Real World Appl., 19 (2014), 1–10. https://doi.org/10.1016/j.nonrwa.2014.02.002 doi: 10.1016/j.nonrwa.2014.02.002
    [37] M. Conti, V. Pata, R. Temam, Attractors for process on time-dependent spaces. Applications to wave equations, J. Differ. Equ., 255 (2013), 1254–1277. https://doi.org/10.1016/j.jde.2013.05.013 doi: 10.1016/j.jde.2013.05.013
    [38] A. N. Carvalho, J. A. Langa, J. C. Robinson, Attractors for infinite-dimensional non-autonomous dynamical systems, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-4581-4
    [39] P. E. Kloeden, T. Lorenz, Pullback incremental attraction, Nonauton. Dyn. Syst., 1 (2014), 53-60. https://doi.org/10.2478/msds-2013-0004 doi: 10.2478/msds-2013-0004
    [40] C. Y. Sun, L. Yang, J. Q. Duan, Asymptotic behavior for a semilinear second order evolution equation, Trans. Amer. Math. Soc., 363 (2011), 6085–6109.
    [41] C. Y. Sun, D. M. Cao, J. Q. Duan, Non-autonomous dynamics of wave equations with nonlinear damping and critical nonlinearity, Nonlinearity, 19 (2006), 2645. https://doi.org/10.1088/0951-7715/19/11/0086 doi: 10.1088/0951-7715/19/11/0086
    [42] Y. Q. Xie, Y. Li, Y. Zeng, Uniform attractors for nonclassical diffusion equations with memory, J. Funct. Spaces, 2016 (2016), 1–11. https://doi.org/10.1155/2016/5340489 doi: 10.1155/2016/5340489
    [43] C. M. Dafermos, M. Slemrod, Asymptotic behavior of nonlinear contraction semigroups, J. Funct. Anal., 13 (1973), 97–106. https://doi.org/10.1016/0022-1236(73)90069-4 doi: 10.1016/0022-1236(73)90069-4
    [44] J. C. Robinson, Infinite-dimensional dynamical systems, Cambridge: Cambridge University Press, 2001.
    [45] Z. Tang, J. Zhang, D. Liu, Well-posedness of time-dependent nonclassical diffusion equation with memory, Math. Theor. Appl., 41 (2021), 102–111.
    [46] Y. Q. Xie, J. W. Zhang, C. X. Huang, Attractors for reaction-diffusion equation with memory, Acta Math. Sinica (Chin. Ser.), 64 (2021), 979–990. https://doi.org/10.12386/A2021sxxb0081 doi: 10.12386/A2021sxxb0081
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(960) PDF downloads(64) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog