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1. Introduction

This paper concentrates on the following nonclassical diffusion equation:
u; — e(OAu; — Au — f k(s)Au(t — s)ds + Au + f(x,u) = g, in R" X R", (1.1)
0
and initial value

u(x,t) = u(x,t), in R" x (—o0, 7], (1.2)

where the forcing term g = g(x) € L>(R")(n > 3) is known, A > 0 is a constant and R” = [, c0).
To study problem (1.1) with (1.2), we assume that the time-dependent perturbed parameter £(¢), the
nonlinearity f and the hereditary memory k(s) satisfy the following conditions, respectively:
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(H1) The time-dependent perturbed parameter () € C!(R) is a decreasing bounded function
satisfying

lim &(¢) = 0, (1.3)
>0
and there exists a constant L > 0, such that
sup(le(®)| + |€'(?)]) < L. (1.4)

teR

(H2) The hereditary memory kernel & is a nonnegative summable function having the explicit form

K(s) = f " p(odo,

and u(s) € L'(R") is a decreasing piecewise absolutely continuous in each interval [0, T] with T > 0.
In particular, u(s) is allowed to exhibit (infinitely many) jumps. Moreover, we require that u(0) < oo
and

k(s) < 6u(s) (1.5)

holds for some 6 > 0 and almost every s > 0. As shown in [1, 2], this is completely equivalent to the
requirement that
u(s +r) < Me ™ u(s)

for some M > 1, 6 > 0, every r > 0, and almost every s > 0, then we obtain
p(e0) = lim pu(s) = 0.
For convenience, we also assume
k(0) = f(;mu(s)ds =1.
(H3) The nonlinearity f € C'(R" x R, R) satisfies
f(x, 8)s > —als]’ — p(x), Y(x,5) e R"xR, (1.6)

and 3
af(x, s)> -1, Y(x,s) e R" xR, (1.7)

where ¢(x) € L'(R"), fo(x) = f(x,0) € L>(R") is given, a, [ are two positive constants and & < A.
We denote by F the function F(x, s) = fos f(x, v)duv, then,

F(x,s) < f(x,s)s + ész.

Let fi(x,s) = f(x,s) +asand F(x, s) = fT ’ fi(x, s)ds, then,

filx, 8) + o(x) = 0, (1.8)
an@—ﬁun+l;“§zo, (1.9)
and
l-—a ,
Fi(x,s) < fi(x,s)s + > s”. (1.10)
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Remark 1.1. The assumption of the nonlinearity comes from [3], but some constraints have been
relaxed. For example, we will not require that ¢(x) is a nonnegative function and / < A. The class
of nonlinearities studied in [4-6] have a restriction on the upper growth by which an exponential
nonlinearity (e.g., f(u) = ") does not hold ture.

According to the Dafermos’ idea in [7], we also add a new variable 1’ to describe the past history
of u, which is defined as follows:

7' =n'(x,s) = f u(x,t—r)dr, s € R*. (1.11)
0

Letn! = 21, i\ = 2, then it gets
12

n, = -1, +u, (1.12)

where R = [0, +c0). Historical variable u.(-, 7 — 5) of u satisfies
f e NueT = 9l @nds < R, (1.13)
0

where R > 0 and o < § (6 is from (1.5)).
Thus the system (1.1) with (1.2) can be rewritten as follows:

u, — e(H)Au, — Au — fo p()AR ($)ds + (A = a)u + fi(x,u) = g, (1.14)

1 __ 1
nm=-Ns+u,

and the initial data !
u(x,7) = u(x,7), n°(x,8) = f u(x, 7 — rydr. (1.15)
0

From (1.13), it is easy to obtain the following estimate:

fo HOMT (B, s < R

For Eq (1.1), it is often used to describe some physical phenomena, for example, non-Newtonian
flows, soil mechanics and heat conduction theory. Specifically, when we study heat conduction
problems in fluid mechanics or solid mechanics, if the influence of viscosity is emphasized, the classic
heat-conduction equation is often extended to the following form (see e.g., [8—10]):

cit — calit — kAu = 0.
However, when we consider polymer and high viscous liquid, etc., some important factors such as

the historical influence of u and the disturbance coeflicient of viscosity must be included [11], that is,
the following evolution equation:

u; — eAu, — vAu — foo k(s)Au(t — s)ds + f(u) = g. (1.16)
0
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The asymptotic behavior of solutions of Eq (1.16) has been studied by many scholars (see e.g.,
[3, 12-19] and the references therein). However, the research focused on the nonclassical diffusion
equation with constant coefficient and bounded smooth domain early on, see e.g., [20-26]. In [11], the
diffusion equation with memory was proposed in the study of heat conduction and relaxation of high
viscosity liquids. The convolution term represents the influence of past history on its future evolution
and describes more accurately the diffusive process in certain materials, such as high viscosity liquids
at low temperatures and polymers. Hence, it is necessary and scientifically significant to study the
nonclassical diffusion equation with the time-dependent coefficient (i.e., variable coefficient) and
memory. Furthermore, for Eq (1.16), we focus on the nonclassical diffusion equation with memory
and a time-dependent perturbed parameter £(¢) on a bounded domain. For example, for the case of
k(s) = 0in (1.1), in [27, 28], the authors proved the existence and regularity of the time-dependent
global attractors on time-dependent spaces when the nonlinearity satisfies |f”(u)] < c¢(1 + |u|) and
critically exponential growth, respectively. In addition, Wang and Ma studied the existence, regularity
and asymptotic structure of the time-dependent global attractors in [29] for this equation when f meets
polynomial growth of arbitrary order. In particular, Wang et al. [6] proved the existence of the time-
dependent global attractors for the problem with the nonlinearity of critical exponential growth.

More recently, the fourth author of the article and other co-authors considered the autonomous
and nonautonomous nonclassical diffusion equation with memory or without memory on bounded
domains, see e.g., [4,5,19,30-32]. In these papers, the operator decomposition and contractive
functional methods are used to obtain the asymptotic regularity of the solutions and verify asymptotic
compactness. It is worth mentioning that Xie et al. [4] have obtained the existence of the time-
dependent global attractors on bounded domain for the nonclassical diffusion equation (1.16), lacking
instantaneous damping with the nonlinearity that satisfies the polynomial growth of arbitrary order.
However, we focus on the unbounded domain. Therefore, we can see that there is few relevant
studies for the asymptotic behavior of solutions of Eq (1.1) in time-dependent whole spaces under
assumptions (H1)-(H3). This is because there are two major difficulties to obtain the existence of
time-dependent global attractors.

(7) First, because of the nonlinearity with no restriction on the upper growth, the higher asymptotic
regularity of the solutions of Eq (1.1) can not be obtained using the method of [33,34].

(i) Second, due to the influence of the time-dependent perturbed parameter £(¢) and the lacking
of compact embedding theorem on unbounded domains R”, it is impossible to directly construct the
contractive function to prove the asymptotic compactness for the corresponding process {U(¢, T)}>r
of Eq (1.1) (see e.g., [29,30,35]).

For solving these problems, a new analytical technique combined with the operator decomposition
method is used to obtain contractive function, and then the pullback asymptotic compactness for the
process {U(t,T)}». of Eq (1.14) is proved. Furthermore, using this operator decomposition method,
the asymptotic regularity of the solutions for Eq (1.14) is also proved. Then, the regularity of
time-dependent global attractors for this equation on 7-{,1 X Lﬁ(R*; H'(R") (H! is defined later) are
established.

For conveniences, hereafter let |-|, be the norm of LP(R") (p > 1). Let (-, ), (-, )+(V-,V-) = (-, g
and (-, ) +(V-, V-)+ (A, A) = (-, ) p2mn) be the inner product of L*(R"), H'(R") and H*(R") respectively.

Let || - |lo Il - Il be the norm of H'(R") and H?(R") respectively, then,

2§ = x5 + [Vx[3, Vx € H'(R");
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X1} = [x5 + [Vxl3 + A, Vx € HA(R").
The time-dependent space H,!' = H'(R") and H? = H*(R") are equipped with the norms:
Il- II(ZHII =|-h+&@IV-; and |- ”3{3 =l Il; + e@la - 5.

It is necessary to point out here that || - ||, and | - |§ + ()| - ||g are equivalent. In fact the following

i
7_{1
inequality is obvious:

2 2 2
-l < 112+ @I - Mlo,

and
12, = l|-|§+1|-|§+6<r>|V-|%
H, 2 2
1 1
> 5l 5+ 57501 5+e@®V-|;

>

1
TR (1-B+e@l-15).

Denote the weight spaces Vo = L2(R*; L*(R"), V, = L;(R*; H'(R") and V, = L,(R*; H*(R")),

and their inner products and norms are defined as follows:

Wy, = j; u(s) W.mds, In'l;, = f u($)'(s)ds;

0

Wy, = f Hs) W dss ], = f H (Sl (9)llgds:
0 0

and

(ee) 2 (o)
Wy, = f H0S) WMy ds, ||, = f H Il ()IiFds.
0 ’ 0
With the above notation, the phase spaces of Eq (1.14) can be denoted as
M, = M(R") = H' xV, and M! := M/(R") = H* xV,
equipped the following norms:
1, = ”'HEH,' +11%0 and ||-|Ii4[1 = ||'||§4t2 + 13,

respectively.
Particularly, we use {M;},cr to denote a family of normed time-dependent spaces. Moreover, we
introduce some common notations based on processes of time-dependent space(see e.g., [35-38]).
Let {M,},cr be a family of normed time-dependent space. Note that the ball with radius of R in M, is

Bi(R) = {we M, : [wlm <R}
For any given € > 0, we define the & neighborhood of set B ¢ M, as follows:

0;B) = | Jiye M, Il =yllag, < 8} = |_Jtx+ 2.

xeB xeB
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Hausdorff semidistance of between two nonempty sets A, B C X; is defined as

distp, (A, B) = supinf ||x — y||p,.
xeA YEB
The plan of this paper is as follows. In Section 2, we recall some basic concepts as the time-
dependent global attractors and useful results that will be used later. In Section 3, we first prove
pullback asymptotic compactness of the process corresponding to problem (1.14) with (1.15) by
constructing contractive function, and then we obtain the existence and the regularity of time-dependent
global attractors to problem (1.14) with (1.15) in whole space R".

2. Preliminaries

In this section, we will recall some basic concepts of time-dependent global attractors and theories
of the existence of time-dependent global attractors (see e.g., [35-37]).

Definition 2.1. Let {M,},cr be a family of normed spaces. A two-parameter family of operators
U(t,7) : M, = M, is called a process if it satisfies the following properties:

(1) U(t,7) = Id, v € R (identity operator);

) U, s)U(s,t) =U(t, 1), Vi > s>1€eR.

Definition 2.2. A family of sets C = {C, : C;, € M, is bounded},cy is called uniformly bounded if
there exists a constant R > 0, such that C, ¢ %,(R) for any r € R.

Definition 2.3. A family of sets B = {B,}cr is called pullback absorbing if B = {B},cg is uniformly
bounded and for all R > 0, there exists a constant fy = fy(t, R) < ¢ such that U(t, 7)%.(R) C B, for any
T < 1.

The process {U(t, T)}:s. is called dissipative whenever it enters a pullback absorbing family B, =
{B?}teR-

Definition 2.4. A time-dependent absorbing set for the process U(#, 7) is a uniformly bounded family
B = {B,},cr with the following characteristics: For any R > 0, there exists #, = #,(¢, R) > 0, such that

Ut,)B(R)C B;, forallTt<t—t,.

Definition 2.5. The process U(t, 7) is called pullback asymptotic compact if for any 7 € R, any bounded
sequence {z,}-, C M, and {7,}” C (—oo,t] with 7, — —o0 as n — oo, the sequence {U(t, 7,)z,} >,
has a convergent subsequence in M,.

Definition 2.6. A time-dependent global attractor of the process U(t,7) is the smallest family o/ =
{,},cr such that

(1) for every t € R, o7 is compact in M;;

(ii) <7 is pullback attracting, namely, <7 is uniformly bounded and

lim distp (U(1, 7)Cr, ) =0
holds for any uniformly bounded family C ={C,},r and every fixedr e Rand 7 < t.

AIMS Mathematics Volume 8, Issue 12, 30537-30561.



30543

Remark 2.1. The pullback attracting nature can be equivalently described in the light of pullback
absorbing: A (uniformly bounded) family K = {K,},r is said to be pullback attracting if for any £ > 0
the family {O?(K})}.er is pullback absorbing.

Theorem 2.1. A time-dependent global attractor <7 exists and it is unique if and only if the process
U(t, 1) is asymptotic compact, i.e., the set

K ={K ={K }ir : K; C M, is compact, K is pullback attracting}
is non-empty.
It can be seen from Definition 2.6 that the time-dependent global attractor is not necessarily
invariant. This is mainly because that the process is not required to meet some continuity. If

the process U(t, 1) satisfies the appropriate continuity, then the invariance of time-dependent global
attractor &/ can be obtained.

Definition 2.7. We say that o7 = {.¢7,},cp is invariant if
Ut, 7)o, = o, t>1€R.

Lemma 2.1. If the time-dependent global attractor <f exists and the process U(t,T) is a strongly
continuous process, then </ is invariant.

Next, we will state the definitions of contractive function and contractive process, which will be
used to obtain asymptotic compactness of a family of process {U(z, 7)},». (see e.g., [23,35,39-43)).

Definition 2.8. Let {M,},cr be a family of Banach spaces and B = {B, ¢ M},r be a family of
uniformly bounded subset. We call function ¢(, -), defined on M, X M., to be a contractive function
on B; X B if for any sequence {z,}”, C B, there exists a subsequence {z,};>, C {z,})", such that

lim lim ¢! (z,,,2,) =0, Yt>71€R.

k—o00 [—>00
We use E(B;) to denote the set all contractive function on B; X B;.
Definition 2.9. Let U(t, 7) be a process on {M,},cr and have a pullback bounded absorbing set B =

{Bi}ier. U(t,7) is called M,-contractive process if for any given € > 0, there exist 7 = T(g) and
¢4 () € €(Br) such that

U T)zi = Ut, Tzallm, < &+ ¢r(z1,22), Yz € Br (i = 1,2),

where ¢}, depends on 7.

Next, we will give the method to prove the existence of time-dependent global attractors for
evolution equations, which will be used in the later discussion.

Theorem 2.2. [35] Let {M,};cr be a family of Banach spaces, then U(t, T) has a time-dependent global
attractor in {M,},er, if the following conditions hold:

(i) U(t,7) has a pullback absorbing set B = {B;};cr in {M}ier;

(ii) U(t, 1) is a M,-contractive process.

Lemma 2.2. [44] Let X cC H C Y be Banach spaces, with X reflexive. Suppose that {u,},"  is a
sequence, uniformly bounded in L*(t,T; X) and du,/dt is uniformly bounded in L’(t,T;Y), for some
p > 1. Then, there is a subsequence of {u,}*, that converges strongly in L*(t,T; H).

AIMS Mathematics Volume 8, Issue 12, 30537-30561.
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3. Time-dependent global attractors in { M,},cr

In this section, we shall consider the existence of time-dependent global attractors in { M,},cg. For
this purpose, we have to first discuss the well-posedness for Eq (1.14) with (1.15).

3.1. The well-posedness of equation

The well-posedness for Eq (1.14) with (1.15) can be obtained by using Faedo-Galerkin method
(see e.g., [38,45]). To this end, we first give the definition of weak solution.

Definition 3.1. Forany R > 0 and T > 7, let I = [r, T], then the function z = (u,n") defined on R" x [
is called a weak solution of the problem (1.14) with initial value z, = (u.,n") € %.(R) Cc M, if

u€ C(ILH), u € (LH), n' € CU; LR H' (R)),
mp + 7y € L¥(1 LR HU(RM)) 0 LA LR HY (R™))).

Furthermore, the following identity hold:

{(ut, W) + &0y, WY1 + (u, Wy + (s Wy, + (fF(W), ) = (g, W), A

<T]§ + 7727 SO>(V1 = <Ll, 90>(V1 ’
holds for any (w, ) € C*(I, H) x C°(I, L;(R*; H'(R"))) and a.e. € I.

Lemma3.1. ForanyR > 0, T > tand z, = (u;,n") € B(R) C M., then the problem (1.14) with (1.15)
has unique weak solution
2(t) = (u(x,0,1') € C([7, T, H, x V),

which continuously depends on the initial data in M., i.e., there exists a constant k > 0 not related to t
such that the process U(t, ) is Lipschitz continuous

U@, 1)zt = U, D)ZIm, < Ce" iz = Zlim,.  Yre[n Tl (3.2)
By Lemma 3.1, we may define the process of solutions on time-dependent space { M, };cr:
uit,tm . M, > M, U(t,t)z, =z(t), Vt>r. (3.3)

In addition, it’s easy to obtain that the process U(¢, 7) is a strongly continuous process on the time-
dependent phase space {M,} k.

3.2. Time-dependent absorbing sets

In the following discussion, let C mean any positive constant and Q(-) be a monotonically increasing
function on [0, co) which may be different from line to line even in the same line.

We always assume that: The assumptions (H1)—-(H3) are true. Furthermore, z(t) = (u(z),n’) is a
sufficiently regular solution of (1.14) with (1.15).

Lemma 3.2. For any R > 0 and z; = (u.,n°) € B.(R) C M.. Then, there exist positive two constants
01 and ky, such that
lul3 + OIVul; + 7150 < QR)e™™ + ky

holds for any T < t.

AIMS Mathematics Volume 8, Issue 12, 30537-30561.
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Proof. Multiplying the first equation of (1.14) by u in L>(R") and the second one by 7’ in V,, then we

obtain
d o 2 » L, , 1~ Do
7 (lulz +&()|Vul5 + |Vn I#,Q) ~ € (O)|Vul; — > [} 1 ($)|Vr (5)]3ds
+|Vul; + fRnfl(x, u)u + | ul} < A )|g|§,
and
1d

e 1
33 [ WO s <208 + o)

Furthermore, we also get

1d (™
3% k() (s)l5ds + —In I,,z < 26%|ul5,
and
1 d * t t 2 2
57 | KSR ). Y ()ds + 5 IVn 2, < 6IVul.
0

From (3.5) and (3.6), one gets

&|Q

(I + o) + —|n 2, <201 + ).

| =

Taking o = 8(”62 and let

E(?)

1
=3 W+ oIV + 19 + (1B + )+ wm : ] ,

1, 1~ 1
H(r) = — 3¢ OIVul} - = f W (9)VI (s)3ds + 5|Vu|§ + —
0

892

—a o, O 45
S+ T

Pl
filx, wu +
R 4

Then combining (3.4) and (3.5), it follows that

d
—E H(t) < 2,
o )+ H(@) < gl

2(1—a)

Furthermore, let

1 —
ap = max{l + 2—6,0'(1 + 6)}, and aqy = min{l1, o}.

Then we get
E() < a (Jul3 + e)Vull + 17 12)

E@®) 2 @ (july + &0)[Vul} + 17'l1%)

AIMS Mathematics Volume 8, Issue 12,
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and
A-—a o O 5
H() 25 |Vu|2 ¥ 892|an s =l +
/l - s(t) o
> 7] ul5 + IV ul5 + 892|V77| Zlntlﬁ,z + , (fi(x, wu + ¢(x)) — lely
(T +s<t>|Vu|§ 1) + f (fi (x e + () = Iy
Rn

>61E(1) — lel1, (3.12)

where 6; = — mm{i, ﬁ, %, A_T"}.

Then from (3.9) and (3.12) we get

d 1
—E(t) +6E() < T

lgl5 + Il

Applying Gronwall lemma, we have

1 1
)< O e + —lgls.
E(1) < E(7)e 26 (= a)lglz 5, Il

By (3.11), it follows that

1

oo
july + e@OIVul3 + 171l < QR + = (W

1
2
+ — .
lgl> 5 |90|1)
Let | | |
k e -nll s a— 2 + — .
1 o (251(/1 — a)|g|z 51 |§0|1)
Then the proof is complete.

Corollary 3.1. For any given R € R*, let z; = (u.,n") € %B.(R) C M., then the process U(t, 1)
corresponding to Eq (1.14) with (1.15) possesses a time-dependent bounded absorbing set By = {B° =
PB(00)}ier, that is there exists ty = ty(t, R) < t, such that

U(t,1)%.(R) c B?, V1<t

In fact, let ty = #o(t,R) =t — 1 Q(R) < tand py = 2kq, then the conclusion can be directly obtained
from Lemma 3.2.

For brevity, later in this article, let B be the bounded uniformly absorbing set obtained in
Lemma 3.2, i.e.,

B’ ={B,:z=(u,n) € B, |lll}, = lul3 + &®)[Vul3 + IIU’IIf,,o < Polier- (3.13)
From Lemma 3.2, it follows that:

Corollary 3.2. For any R > 0 and z. = (u;,n°) € B.(R) C M., then there exists Ky = Ko(R) such that

u(t)l3 + e@IVu@l; + I7'1l% o <
holds forall t — T > 0.
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Corollary 3.3. For any R > 0 and z; = (u.,n") € %.(R) C M., then there exists p; = p,(k;) > 0, such
that the following estimate:

t+1
f (Iu(s)l% + |Vu(s)|§ + f fi(x, u(s))u(s)) ds < Q(R)e 10 o
t R”

holds for any T < t.

Proof. By (3.4), it’s easy to obtain
Ld
2dt

., (fi(x, wu + ¢(x)) <

A-—a
(I + @IVuly + 199715 ) + == luly + |V

1 2
. 3.14
Sl leh (3.14)

Let b; = min{l, A_T“} and integrating (3.14) on [z, + 1], we get

t+1
f (Iu(S)E +Vu()ls + | (filx uls)uls) + ¢(X))) ds
t R7

1 1 )
<5 (m)lgﬁ el + 5 (lu(t)B + e Vu(r)3 + |Vntli’2))

<QR)e™ ¢ L

1 ) 1
b (m)|g|2 + |90|1) + —ki.

2b,

Letp, = b—ll (m)lg@ + |go|1) + 2_1171]‘1 + |¢l; and T < ¢, then the proof is complete.
Lemma 3.3. For any R > 0 and z; = (u., %) € B(R) C M.. Then, there exist positive two constants
0, and ky, such that

@ + [Vu()l3 + f Fi(x,u) < Q(R)e™ "™ + k,

R

holds for any T < t.

Proof. We now multiply the first equation of (1.14) by u, in L*(R"), then we get

1d o 1 (1)
—— (A= a)lul} + |Vul5 +2 f Fi(x,u) +2 f u(s) (Vu, V' (s)) ds | + = w3 + —=|Vu,[3
2dt - 0 2 2
2 o]
(0) , 1
<2[vuf; - £ 1 f K IV ()ds + S1gh. (3.15)
0
Setting

l—a

F(u) = f (F 1(x, 1) = fo(x)u + Iulz) >0,
Rn

N(7) :% [(a — a)lul; +|Vul5 + 2 f Fi(x,u) +2 f ) u(s) (Vu, Vi'(s)) ds|.
n 0

AIMS Mathematics Volume 8, Issue 12, 30537-30561.
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From Lemma 3.2 and Corollary 3.2, we get that for any 7 > T, there exists t* € (7, ¢] such that
() + V)G + V7", + | (A u(@®)ul™) + ¢(x)) < O(R).
]R)l

Furthermore, associating with (1.10), it is easy to obtain the following inequality:
(@) + [Vu@) + V" 2, + Fu(r*)) < OR) (3.16)

holds for some t* € (, t]. Let

1 (o)
By(t) = 5 (Iu(®)B + e@IVu(t) + [Vn1},) + BN(D) + % f k(s)IVr'(s)3ds,
0

where
- 1min{ 1 1 2
2 1+A=1"4" u20)

Then, 1 —(1+|A—1)B > 3,1-28> 3. Let

Véla =P +21—a) = 2a -1} <

A

a = %min{l - (1 +A=-1)B,26,1-2B},

a, = %max{l + (1 +|/1—l|)ﬁ,2ﬁ,L+2,B,1+,B+§}.

Therefore, we get

B
4
> ay (Ju(t) + IVu@) + V7%, + F () -

S\t

1ol (3.17)

1
IVu(n)l; + S - 28IVl + BF () ~

B
2

1
Bs() 2 5 (1 = (1 +]1- 1)) lu(n)l3 +

and

g 1

1
<ay (o)l + IVu(l + Vi1, + ) + Z 1Ak (3.18)

1 1 1
By(1) <5 (1+ (1 +]2=18)) lu()f3 + S+ 28)|Vu(t)3 + S +B+ V'L, + BF (u) +

Combining with (3.4) and (3.15), it follows that

d 1 &(t) 1, 1 w OB\
EBﬁ(t) + §|Mt|§ + 7|Vuz|§ - 58 (f)|VM|§ ) (1 I . Hu (S)|V77t(s)|%d5
A—«a
3 |ul3 + Al%wnqjg + f filx, uyu < Cgls. (3.19)
Rn

+(1 = 3B)|Vulj +

Let

- 1 t 1, 1 20 © .
Bﬁ(t>:5|u,|§+?wutli—isu)wmé—g(l—“ (2)’3 ) fo K (V' (s)adss
B

402

A—«a

2

+ (1 =3B)|Vul3 + uly + V', + | filx,wu.
Rn
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Then,
- A—«a
By(t) =(1 = 3)Vul} + “=luly + 4'%|V77’|f,,2 + f i, wyu
Rn
, A-—a H B "2
>(1 = 3pB)[Vul; + 7 |ul; + @IVU L2 +B | (il wu + ¢(x)) = lgli
Rn
» A-a H B "2 2
>(1 = 3B)Vuly + =y + 251V + BF ) + B | (foCou + (@ = D + ¢() = el
Rﬂ

2

A—«a
2(1 = 3B)|Vul; + (T —lo— 18- G

)|u|§ + B ViR, + BF ) - CUfol + Igh).
Then, there is constant 6, > 0, such that

By(r) = 6:B5(1) — C(Ifol3 + Ieoly). (3.20)

Thus, we can rewrite (3.17) as follows:

d
—Bs(0) + 62By(1) < Cgls + 1fol + lely).

Applying Gronwall lemma, we have
By(t) < By(t)e ™ + Cllly + Il + 1fol})
<aiy (Ju(r*) + Va3 + 1V oy + F (@) e + Clgl + 19 + /o3
<SOR)e™ + C(lgly + Igl3 + 1fol3) (3.21)

holds for any 7 < ¢. Then the proof is complete.

3.3. Time-dependent global attractors

In subsection, we will prove the existence of time-dependent global attractors in {M,},z through
the process U(t, 7) defined by (3.3). In order to prove Theorem 3.1, we first give the following lemmas.

Lemma 3.4. For any R > 0 and z; = (u.,n") € $.(R) C M., then there exists a positive constant
K = Ki(R), such that

t+1
f (lu(8)l5 + £(5)|Vu(s))5)ds < K

holds for any t > 1.

Proof. From (3.19) and the value of 3, one gets

d 1 &(1)
EB,B(I) + Elutlg + 7|Vut|§ < Clgli + gl + /o). (3.22)

Integrating ¢ from ¢ to ¢ + 1 on both sides of (3.22), and organizing it to obtain
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1+1
f (I + &) Vui($)3) ds < By(t) + Cllghs +Igl3 + |fo3)
t
<QR)e™ + Clgly + I8l + 1/ol3) + aiBlfol3
<OR) + Cllgh + Igl3 + 1fol3) + arBlfol3
holds for any 7 < 7. Let K; = Q(R) + C(l¢l + Igl3 + 1 fol3) + a1Blfol%, then the proof is complete.

Lemma 3.5. Let B be any bounded subset M, and z, € B. Then for any € > 0, there exist positive
constants K, large enough and t, < t, such that

f (Iul2 + s(t)IVulz) + f‘x’ ,u(s)f \Vi'(s)*ds < Ce
B 0 B

¢
holds for every T < t; < t and k > K, where B, = {x € R" : |x| > k}.

Proof. Let 6(-) € C*(R") satisfies
0<0(s)<1, 0<O(s)<h, YseR",

and
0(s) =0, Vs e[0,1), 8(s)=1, Vs €[2,00),

where b > 0 is a constant. Setting 6, = (2|x| ) and multiplying the first equation of (1.14) by lel/t in
L*(R™), then we obtain

d (1) 1~ —a
EEk(t)_ |6x Vi |2_§ fo 1 ()10:Vn (s)3ds + 10,V ul3 + |Orul
8 [ ) 8&(1) )
<- 2 u(s) | Obulx-Vn'(s))ds — 2 OO u(x - Vuy)
R” Rn
8 1
-Z f 06, u(x - Vu)+m|9kg|§— f 6; f(x, W, (3.23)
- Rn

where E (f) = %[l@kulg + &(0)|0 Vul} + |9kV17‘|/21’2]. Similar to (3.7), we define the function Ny(¢) as
follows:

Ni(t) = foo k(s) (6:Vn',0.Vn') ds. (3.24)
Then it is follows that 0
%Nk(t) + %wkvnf@ < 2616, Vul>. (3.25)
We can define a functional with a undetermined coefficient « as follows:
H(0) = Ei(0) + SNi(0) (3.26)
Let0 <« < 292 be sufficiently small, then it follows that

H(1) > 5 (|eku|2+s<t>|ekwlz+|9kVn| ) (3.27)
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and

1+86
H(f) < — %

(16:ul} + @16Vl +10.V7']%,) (3.28)

Combining with (3.23), (3.25) and (3.26), we obtain

d A—a 1 K
EHk(t) +— |0l + 5(1 — 0°K)|0Vul3 + L—l|9kvnf|ﬁ,2
8 ™ 8e(t
<-—= u(s) | 6Gul(x - Vi'(s)ds — &(t) 0,6,u(x - Vu,)
k2 0 Rn k2 Rn
o f (O |ul’|xl* + : 16815 — f O fi(x, wu. (3.29)
k4 R~ 2(/1 - (I) R

From (1.9), there is

_ f 02 fi(x, w)u = — f 0 (fi(x, wu + (x)) + f 02 (x)
R2 R Rn
<- f O (fi(x, wu + @(x)) + el
R}‘l

<l6relr.

Let 65 = min{d — a, I‘LBZK, £}, then we have that

d
—Hk(t)+ (I@ku|2+s(t)|9kVu|2+IQkan )

<- 8 ,u(s) OO u(x - V' (s))ds — 8e(t) f OO u(x - Vu,)
Rn

TR - k2
8 1
-3 Gké?ku(x Vu) + T a)|9kg|§ + 6,0l (3.30)

Next, we will estimate each item on the right side of (3.30). According to the definition of 6, it can be
seen that

k
6,=0. i<z orld>k

Therefore,

64 4
— f CARUREEE (@)2lul|x*
K E<iv<k

64

<— b2 |ul®
k2 §S|x|<k
C

Similarly, we also can obtain the following estimates:

00

, C
), M Rnekeku(x-ws))dss;(|u|§+|Vn’|,%,2);
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N C
o fR O V() < - (luf + eOIViu).

Combining with (3.28), then (3.30) can be rewritten as follows:

d
—H (t) + 6, H (¢t
S H(0) + 6 H ()
C
< (b + 1V, + e@IVi) + C (16 + 1ough ). (3.31)
By Gronwall lemma, it follows that

H, (1)

—03(t—7 c - ' s N
SHy(@)e ™7 + C (16l + |0ufoly + 16kl + —e ™ f & (I + V', + () Vu(9)]3) ds.

T

Combining with Lemma 3.3, we have
—63(1—1 C
Hy(®) < QR)e ™7 + C (6igls + 10 foly + 16kth) + — Ko,

and for any & > 0, there exists K; > 0 large enough, such that for every k > K|,

(g5 + 105 +0k) = | (1P + Il + ) < Ces
B¢

k
C
—K, < Ce,
2 Ko
and lett; = — é In @, for every T < t; < t, it follows that
Q(R)e " < Ce.

By (3.27), then,
Octal3 + £(O)10Vul + 10T}, + £(OF 1 (Buu) < Ce

holds for every 7 < t; < tand k > K;. So we have that

J,

k

(lul* + &) Vul?) + f ) u(s) | IVn'(s)Pds < Ce.
0 B

In order to obtain the asymptotic regularity estimates later, we decompose the solution U(t, 7)z, =
(u(t), n") into the following sum:

U, 1)z: = U(t, 1)z + K(1, T)zx, (3.32)

where U, (t,7)z; = (v(1),&") and K(t, 7)z; = (w(t), (") solve the following equations respectively:

v, — &(t)Av, — Ay — fw,u(s)Ag’(s)ds + f(x,u) — f(x,w)+ (A +Dv =0,
0
& =& +v,

(3.33)
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where [ is a constant from (1.5). It has an initial data

\)

v(x, 7) = u(x), £(x, 5) = f u(x,7—60)do, (x,5)eR"xR". (3.34)
0
And
w; — e(HAw, — Aw — f WAL (8)ds + f(x,w) + (A + Dw = lu+ g,
0 (3.35)
é/tt = _é/i + W,
with the initial value conditions
wx,7)=0,(x,5) =0, (x,5)€R"xR". (3.36)

Lemma 3.6. Assume that K(t, 1)z, = (w(t), (") is the solution of Eq (3.35) with (3.36). Then there exist
positive constants k;(i = 3,4), such that

W@ + Vo) + 11,0 + F (@) < ks
and
1+1
f (I3 + @IV (s)B) ds < ks
t
hold for any t — t > 0.

Proof. This proof can imitate the proof of Lemma 3.2, Corollary 3.3 and Lemma 3.4 word by word, it
should be noted that (3.17), (3.21) and ||(w(7), {)|[pm. = 0. Then hence is omitted.

Lemma 3.7. Assume that U,(t,7)z. = (v(t),&") is the solution of Eq (3.33) with (3.34). Then,
tim (U1, D)zl ) = 0

holds for every t € R fixed.

Proof. Multiplying the first equation of (3.33) by v(¢) and integrating in L>(R") and the second one
by & in V, we have

1d 1
5 2 (VB + IVVE + IVET) + fo — ($)IVE'(3ds — & OIVV + Vv + v <0, (337)

and
00 1 (o)
> U(SIE($)ds — = f W (OIE()ds < [VhIE - (3.33)
2dt Jy 2 Jo
Furthermore,
1d ~ 1
2dr ), k()IE'(s)l3ds + Z|§’(S)I,2,,2 < 0l (3.39)

Similar to (3.7), we introduce the functional
Ni(r) = f k(s)(VE'(s), VE (5))ds.
0
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Then,
E(TNI(I) + = IVf(t)Iﬂz < 0 IVv()l;.
Setting up
1
YTt ey

Furthermore, we define the energy-like functional

| 0
Dyt.7) =3 (IVI% + 8OV + IVE, + YL, + Vfo k()" (s)3ds + 7N1(t)) :

Then we get

Dy(t,7) < az (VB + eOIVV3 + €12 0) = asllU (2, D)zl
and

Dy(t,7) 2 a3 (V3 + £@IVV3 + I€120) = @l Uit D)zl
where a; = & 70 and a3 = 2(1+y) > 0.

Therefore, 1t follows that

d 1~ , ,
D7) - > f W ($)IVE (s)Pds — & (Vv + Lve?, + Lig,
dt 2 J, 4 8

1 —
+(A=2y -y + vo"

e(0)|Vvf3 < 0.
By (3.41), we have

1 1
—Q+P)y==,1-v0>=.

Letoy = - mm{ A=2y -y, = 79 }, then (3.45) can be rewritten as

%Dy(t, T) + 04D, (2, 7) < 0.
Applying Gronwall lemma, we get that

D,(t,7) < D,(1,7)e ™.
Then, combining with (3.43) and (3.44), we have

lim (2, D)zl = 0
T——00

is true for any ¢ € R".

Lemma 3.8. There exists a positive constant Kz = K3(R) which depends on t and T, such that

V@5 + e@law@l; + 11715, <

holds for any T <t € R.

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)
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Proof. Acting on the first equation of (3.35) by —Aw(f) on L*(R"), we have

-
L (vl + slawl + AP ) - ‘9(”|A Wl -5 fo K (DAL (9)l3ds

241 (3.48)
+ AVl + 5|Aw|§ < Plul + Igl3-
Similar to (3.7), we introduce the functional
Ny (1) =f k(s)(AL'(s), AL'(s))ds.
0
Then,
Ed_NZ(t) + —|A§ |,12 < 67|Awl;. (3.49)
Therefore, from (3.48) and (3.49), it is that
1d 1 & (t) 1 e,
IVol; + &AWl + AL, + —Na(1) | - - —f 1 ()IAL (s)l3ds
2 d 40 2 Jo (3.50)

T 92 — AL, + AVl + —|Aw|% < Plul; + Igl5.

By Corollary 3.2 and the Gronwall lemma, we have

Vol + snlAw®) + 1AL, < C (% + 1gl3)

holds for any 7 < € R. Let
K = C(Ko +1gh)).

then it follows that
IVw@)l5 + et)Aw(s)l5 + IAKII,ZI,Q <K

holds for any 7 < ¢t € R.
Next, we will verify the existence and regularity of the pullback global attractors .7 for Eq (1.1).

Theorem 3.1. The family of process U(t,t) for Eq (1.14) with initial conditions (1.15) is M-
contractive process on By € B® (from (3.13)).

Proof. Let z;(t) = (u(1), &) = U(t, 7)7. (i = 1,2) be the solutions to Eq (1.14) with the parameter &(7)
and initial data 7. € B, € B® (i = 1,2) (B° is from (3.13)) respectively.
By (3.32), there is

(1) = U, 1)z, = Ui(t, 17 + K(0)z, = (vi(0), &) + (wi(0), &),
It gets

U@, 0z - U020,

3.51
21U (1, 1)z = Ui (1, D)2y, + 2 (le(t) — (1)l + eV, (1) = Var ()l + 1] — ééllﬁ,o), (32D
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and
lim U5, 712} - Us(6, 021y, < 2 lim (101, 02k, + 101 (D2 I,,) = 0.

Then for any € > 0, there is T = T'(¢) < t such that
AU, T2y - UG, TR, < & (3.52)

holds for any fixed r > 7.
Let (@ (1), ") = (wi(t) — wy(1), {] — ;) be the solution of the following system:

w; — e(HAw;, — Aw — fm H(AG (8)ds + f(x,wy) — f(x,ws) + (A + D@ = l(u; — uy),
0

! !
S, = —¢, + .

It has an initial value conditions
w(x,7)=0,¢"(x,5) =0, (x,5)€R"xXR".
Next, we also define the functional
() = % l@(0)); + OV @); + Vs, + 5 92|Vg o + 7 1 S (lgtlﬁ,z + Ig’li,z))-
(1+6°)
Then,

() < as ([ + OV OF +1I'1,)
(@) 2 a ([w) + OV OF +1Is'1,)

where a; = 5 max({1 + 5, 21((11:992))} and a4 = 5 min{1, m}.
Similar to (3.5)—(3.7), we get
L2 (16, +16'R,) + HIg'R, < 201 + Pl (3.53
2 dr Sl T1S k2 S‘#z— ( )wz, .53)
and
57 k(s)(Vs'(s), V§'(s)) + —|VS‘ 2 < FIVal;.
2dt Jo
Then it yields
d e ’(t)
—I(1) - —f 1 (9)IVs'(9)lrds — —|Val; + |Vw(t)|§
di 2 Js
+ Zo(r v LT
|w( )5 + 882| $'lha 16(1 n 62)|§‘ .2
l
<= (b = (). (3.54)
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1 A

Let 65 = i min{y, 71, s }» then it follows that

d I
Er(t) +050°(2) < E|M1(f) — wr ()5
So, we get

2

l t
l@(n)f; + eIV @)l +1I'l[5 < — /16_55’ f ™ lui (s) — ua(s)lgds. (3.55)
4 T

And

!
e ! f e luy (s) — up(s)3ds
T

! t
< f luy (5) — up(s)*ds + e“*’f %" f |ty (s) — up(s)*ds
T JB T B
!
< f luy(s) — ua(s)Pds + Ce.
T By

Then setting

¢z1,22) = C f f (lur(5) = ua(9)3) ds. (3.56)
T JB;

Combining with Lemmas 3.3 and 3.4. Applying Lemma 2.2, then the sequences {u,(s)} ", is relatively
compact in L*(T,t; L*(By)). In other words, for any sequences {z,(T) = (u.(T),n!)} ¢ By € B°,
{z.(t) = (u,(£), 1)} is the solution of Eq (1.14) with the initial data {z,(T) = (u,(T),n")} respectively.
Then there exist subsequence {z,,} C {z,} satisfying

lim lim ¢%(z,,, 2,,) = 0.

k—o0 [

It follows that ¢! € €(By). Substituting (3.56) and (3.52) into (3.51), one gets
||U(t9 T)x - U(ta T)yllg\/(l < CS + QDIT(xa Y)

By Definitions 2.8 and 2.9, then ¢/ is contractive function in By. Therefore, it’s easy to obtain that the
process U(t, T) is M,-contractive process on By € B® (from (3.13)).

As the end of this article, we will deduce the main conclusion as the following theorem:

Theorem 3.2. The process U(t,7) defined by (3.3) possesses a time-dependent global attractor <
in {M}ier, and <7 is non-empty, compact, invariant in {M};cx and pullback attracting in {M;};cr.
Furthermore,

Jj C {le }t€R~

Proof. Thanks to Lemma 3.2 and Theorem 3.1, it’s easy to get the existence of time-dependent global
attractor <7 for the process U(t, ) defined by (3.3) in time-dependent spaces {M;},cr. According to
Lemmas 3.7 and 3.8, the pullback asymptotic regularity of the solutions of Eq (1.1) is proved, and the
regularity of the time-dependent global attractor <7 is obtained. By Lemma 2.1 and (3.2), it follows
that the invariance of time-dependent global attractor .o/
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4. Conclusions

We conclude the existence, uniqueness and regularity of time-dependent global attractors on whole
space. The findings of this study can be considered as a supplement to our previous works, such
as [4,5]. We overcome some essential difficulties for studying this kind of problem, including that
the compact embedding is no longer valid under the case of unbounded domain and the nonlinear
term fulfills the supcritical growth as well as the memory kernel satisfying more general assumptions.
However, our results show that the method of operator decomposition that was proposed in [46] is
available for dealing with the case of unbounded domain like (1.1).

Unfortunately, we fail to consider the existence of time-dependent global attractors for Eq (1.1)
which lacks instantaneous damping on whole space, and further study the upper-semicontinuity of
time-dependent global attractors between two kinds of equations. Future studies shall consider
such issues using the ideas of the paper and [4, 5], i.e., the asymptotic behavior of solutions for
nonautonomous and autonomous equations (1.1) lacking instantaneous damping on whole space.
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