Research article Special Issues

On the solvability of the indefinite Hamburger moment problem

  • Received: 14 July 2023 Revised: 21 October 2023 Accepted: 31 October 2023 Published: 06 November 2023
  • MSC : 30E05, 15B57, 46C20

  • In this paper, we present a new approach for the solvability of the indefinite Hamburger moment problem in the class of generalized Nevanlinna functions with a given negative index, which is more algebraic and completely different from the existing method [8] based on the step-by-step Schur algorithm. As a by-product of this approach, we simultaneously obtain a concrete rational solution of such an indefinite Hamburger moment problem when the solvability conditions are met. The basic strategy focuses on the structural characteristics of the Hankel matrix and the relation among the Hankel, Loewner, Bezout and some other structured matrices.

    Citation: Yongjian Hu, Huifeng Hao, Xuzhou Zhan. On the solvability of the indefinite Hamburger moment problem[J]. AIMS Mathematics, 2023, 8(12): 30023-30037. doi: 10.3934/math.20231535

    Related Papers:

  • In this paper, we present a new approach for the solvability of the indefinite Hamburger moment problem in the class of generalized Nevanlinna functions with a given negative index, which is more algebraic and completely different from the existing method [8] based on the step-by-step Schur algorithm. As a by-product of this approach, we simultaneously obtain a concrete rational solution of such an indefinite Hamburger moment problem when the solvability conditions are met. The basic strategy focuses on the structural characteristics of the Hankel matrix and the relation among the Hankel, Loewner, Bezout and some other structured matrices.



    加载中


    [1] N. I. Akhiezer, The Classical Moment Problem and Some Related Questions in Analysis, London: Oliver and Boyd, 1965.
    [2] S. Barnett, Polynomials and Linear Control Systems, New York: Marcel Dekker, 1983.
    [3] S. Barnett, C. Storey, Matrix Methods in Stability Theory, London: Nelson, 1970.
    [4] G. N. Chen, The general rational interpolation problem and its connection with the Nevanlinna-Pick interpolation and power moment problem, Linear Algebra Appl., 273 (1998), 83–117. https://doi.org/10.1016/S0024-3795(97)00346-7 doi: 10.1016/S0024-3795(97)00346-7
    [5] G. N. Chen, B. Zhao, H. P. Zhang, The general rational interpolationproblem in the scalar case and its Hankel vector, Linear Algebra Appl., 244 (1996), 165–201. https://doi.org/10.1016/0024-3795(94)00223-1 doi: 10.1016/0024-3795(94)00223-1
    [6] G. N. Chen, H. P. Zhang, Note on products of Bezoutians and Hankel matrices, Linear Algebra Appl., 225 (1995), 23–35. https://doi.org/10.1016/0024-3795(93)00305-J doi: 10.1016/0024-3795(93)00305-J
    [7] M. Dereyagin, On the Schur algorithm for indefinite moment problem, Meth. Funct. Anal. Topol., 9 (2003), 133–145.
    [8] V. Derkach, S. Hassi, H. de Snoo, Truncated moment problems in the class of generalized Nevanlinna functions, Math. Nachr., 285 (2012), 1741–1769. https://doi.org/10.1002/mana.201100268 doi: 10.1002/mana.201100268
    [9] M. Fiedler, Quasidirect decomposition of Hankel and Toeplitz matrices, Linear Algebra Appl., 61 (1984), 155–174. https://doi.org/10.1016/0024-3795(84)90028-4 doi: 10.1016/0024-3795(84)90028-4
    [10] M. Fiedler, V. Pták, Bezoutians and intertwining matrices, Linear Algebra Appl., 86 (1987), 43–51. https://doi.org/10.1016/0024-3795(87)90286-2 doi: 10.1016/0024-3795(87)90286-2
    [11] M. Fiedler, V. Pták, Loewner and Bezout matrices, Linear Algebra Appl., 101 (1988), 187–220. https://doi.org/10.1016/0024-3795(88)90151-6
    [12] P. A. Fuhrmann, Polynomial models and algebraic stability criteria, In: Feedback Control of Linear and Nonlinear Systems: Proceedings of the Joint Workshop on Feedback and Synthesis of Linear and Nonlinear Systems, 1982, 78–90.
    [13] G. Heinig, U. Jungnickel, Hankel matrices generated by the Markov parameters of rational functions, Linear Algebra Appl., 76 (1986), 121–135. https://doi.org/10.1016/0024-3795(86)90217-X doi: 10.1016/0024-3795(86)90217-X
    [14] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge: Cambridge University Press, 1985.
    [15] M. G. Krein, A. A. Nudelman, The Markov Moment and Extremal Problems, New York: American Mathematical Society, 1977.
    [16] P. Lancaster, M. Tismenetsky, The Theory of Matrices with Applications, $2^nd$ edition, New York: Academic Press, 1985.
    [17] Y. P. Song, H. F. Hao, Y. J. Hu, G. N. Chen, Some propositions on generalized Nevanlinna functions of the class $\mathcal N_{\kappa}$, Adv. Math. Phys., 2014 (2014), 605492. https://doi.org/10.1155/2014/605492 doi: 10.1155/2014/605492
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(847) PDF downloads(44) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog