Research article

Generalizations of AM-GM-HM means inequalities

  • Received: 02 August 2023 Revised: 24 October 2023 Accepted: 26 October 2023 Published: 06 November 2023
  • MSC : 15A45, 15A60, 47A30, 47A63

  • In this paper, we showed some generalized refinements and reverses of arithmetic-geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018), 901–920]. Among other results, it was shown that if $ a, b > 0 $, $ 0 < p\leq t < 1 $ and $ m\in\mathbb{N^{+}} $, then

    $ \begin{align*} \frac{(a\nabla_{p}b)^{m}-(a!_{p}b)^{m}}{(a\nabla_{ t}b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $

    and

    $ \begin{align*} \frac{(a\sharp _{p} b)^{m}-(a!_{p}b)^{m}}{(a\sharp _{ t} b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $

    for $ b\geq a $, and the inequalities are reversed for $ b\leq a $. As applications, we obtained some inequalities for operators and determinants.

    Citation: Yonghui Ren. Generalizations of AM-GM-HM means inequalities[J]. AIMS Mathematics, 2023, 8(12): 29925-29931. doi: 10.3934/math.20231530

    Related Papers:

  • In this paper, we showed some generalized refinements and reverses of arithmetic-geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018), 901–920]. Among other results, it was shown that if $ a, b > 0 $, $ 0 < p\leq t < 1 $ and $ m\in\mathbb{N^{+}} $, then

    $ \begin{align*} \frac{(a\nabla_{p}b)^{m}-(a!_{p}b)^{m}}{(a\nabla_{ t}b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $

    and

    $ \begin{align*} \frac{(a\sharp _{p} b)^{m}-(a!_{p}b)^{m}}{(a\sharp _{ t} b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $

    for $ b\geq a $, and the inequalities are reversed for $ b\leq a $. As applications, we obtained some inequalities for operators and determinants.



    加载中


    [1] H. Alzer, C. M. da Fonseca, A. Kova$\check{c}$ec, Young-type inequalities and their matrix analogues, Linear Multilinear A., 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588 doi: 10.1080/03081087.2014.891588
    [2] E. F. Beckenbach, R. Bellman, Inequalities, Berlin, Heidelberg: Springer, 1961. https://doi.org/10.1007/978-3-642-64971-4
    [3] D. Choi, A generalization of Young-type inequalities, Math. Inequal. Appl., 21 (2018), 99–106. https://doi.org/10.7153/MIA-2018-21-08 doi: 10.7153/MIA-2018-21-08
    [4] D. Choi, M. Sababheh, Inequalities related to the arithmetic, geometric and harmonic means, J. Math. Inequal., 11 (2017), 1–16. https://doi.org/10.7153/jmi-11-01 doi: 10.7153/jmi-11-01
    [5] W. Liao, J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6 (2015), 191–202. https://doi.org/10.15352/afa/06-3-16 doi: 10.15352/afa/06-3-16
    [6] J. Pe$\check{{\rm c}}$ari$\acute{{\rm c}}$, T. Furuta, J. M. Hot, Y. Seo, Mond-Pe$\check{{\rm c}}$ari$\acute{{\rm c}}$ method in operator inequalities: Inequalities for bounded selfadjoint operators on a Hilbert space, Zagreb: Element, 2005.
    [7] M. Sababheh, On the matrix harmonic mean, J. Math. Inequal., 12 (2018), 901–920. https://doi.org/10.7153/jmi-2018-12-68
    [8] M. Sababheh, D. Choi, A complete refinement of Young's inequality, J. Math. Anal. Appl., 440 (2016), 379–393. https://doi.org/10.1016/j.jmaa.2016.03.049 doi: 10.1016/j.jmaa.2016.03.049
    [9] M. Sababheh, M. Moslehian, Advanced refinements of Young and Heinz inequalities, J. Number Theory, 172 (2017), 178–199. https://doi.org/10.1016/j.jnt.2016.08.009 doi: 10.1016/j.jnt.2016.08.009
    [10] C. S. Yang, Z. Q. Wang, Some new improvements of Young's inequalities, J. Math. Inequal., 17 (2023), 205–217. https://doi.org/10.7153/jmi-2023-17-15 doi: 10.7153/jmi-2023-17-15
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1224) PDF downloads(73) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog