In this paper, we showed some generalized refinements and reverses of arithmetic-geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018), 901–920]. Among other results, it was shown that if $ a, b > 0 $, $ 0 < p\leq t < 1 $ and $ m\in\mathbb{N^{+}} $, then
$ \begin{align*} \frac{(a\nabla_{p}b)^{m}-(a!_{p}b)^{m}}{(a\nabla_{ t}b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $
and
$ \begin{align*} \frac{(a\sharp _{p} b)^{m}-(a!_{p}b)^{m}}{(a\sharp _{ t} b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $
for $ b\geq a $, and the inequalities are reversed for $ b\leq a $. As applications, we obtained some inequalities for operators and determinants.
Citation: Yonghui Ren. Generalizations of AM-GM-HM means inequalities[J]. AIMS Mathematics, 2023, 8(12): 29925-29931. doi: 10.3934/math.20231530
In this paper, we showed some generalized refinements and reverses of arithmetic-geometric-harmonic means (AM-GM-HM) inequalities due to Sababheh [J. Math. Inequal. 12 (2018), 901–920]. Among other results, it was shown that if $ a, b > 0 $, $ 0 < p\leq t < 1 $ and $ m\in\mathbb{N^{+}} $, then
$ \begin{align*} \frac{(a\nabla_{p}b)^{m}-(a!_{p}b)^{m}}{(a\nabla_{ t}b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $
and
$ \begin{align*} \frac{(a\sharp _{p} b)^{m}-(a!_{p}b)^{m}}{(a\sharp _{ t} b)^{m}-(a!_{ t}b)^{m}}\leq\frac{p(1-p)}{ t(1- t)} \end{align*} $
for $ b\geq a $, and the inequalities are reversed for $ b\leq a $. As applications, we obtained some inequalities for operators and determinants.
[1] | H. Alzer, C. M. da Fonseca, A. Kova$\check{c}$ec, Young-type inequalities and their matrix analogues, Linear Multilinear A., 63 (2015), 622–635. https://doi.org/10.1080/03081087.2014.891588 doi: 10.1080/03081087.2014.891588 |
[2] | E. F. Beckenbach, R. Bellman, Inequalities, Berlin, Heidelberg: Springer, 1961. https://doi.org/10.1007/978-3-642-64971-4 |
[3] | D. Choi, A generalization of Young-type inequalities, Math. Inequal. Appl., 21 (2018), 99–106. https://doi.org/10.7153/MIA-2018-21-08 doi: 10.7153/MIA-2018-21-08 |
[4] | D. Choi, M. Sababheh, Inequalities related to the arithmetic, geometric and harmonic means, J. Math. Inequal., 11 (2017), 1–16. https://doi.org/10.7153/jmi-11-01 doi: 10.7153/jmi-11-01 |
[5] | W. Liao, J. Wu, Matrix inequalities for the difference between arithmetic mean and harmonic mean, Ann. Funct. Anal., 6 (2015), 191–202. https://doi.org/10.15352/afa/06-3-16 doi: 10.15352/afa/06-3-16 |
[6] | J. Pe$\check{{\rm c}}$ari$\acute{{\rm c}}$, T. Furuta, J. M. Hot, Y. Seo, Mond-Pe$\check{{\rm c}}$ari$\acute{{\rm c}}$ method in operator inequalities: Inequalities for bounded selfadjoint operators on a Hilbert space, Zagreb: Element, 2005. |
[7] | M. Sababheh, On the matrix harmonic mean, J. Math. Inequal., 12 (2018), 901–920. https://doi.org/10.7153/jmi-2018-12-68 |
[8] | M. Sababheh, D. Choi, A complete refinement of Young's inequality, J. Math. Anal. Appl., 440 (2016), 379–393. https://doi.org/10.1016/j.jmaa.2016.03.049 doi: 10.1016/j.jmaa.2016.03.049 |
[9] | M. Sababheh, M. Moslehian, Advanced refinements of Young and Heinz inequalities, J. Number Theory, 172 (2017), 178–199. https://doi.org/10.1016/j.jnt.2016.08.009 doi: 10.1016/j.jnt.2016.08.009 |
[10] | C. S. Yang, Z. Q. Wang, Some new improvements of Young's inequalities, J. Math. Inequal., 17 (2023), 205–217. https://doi.org/10.7153/jmi-2023-17-15 doi: 10.7153/jmi-2023-17-15 |