Research article

Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance

  • Received: 21 August 2023 Revised: 10 October 2023 Accepted: 17 October 2023 Published: 23 October 2023
  • MSC : 35K99, 97M30

  • This paper aims to explore the inverse variation-inequality problems of a specific type of degenerate parabolic operators in a non-divergence form. These problems have significant implications in financial derivative pricing. The study focuses on analyzing the Hölder continuity of weak solutions by employing cut-off factors.

    Citation: Jia Li, Zhipeng Tong. Local Hölder continuity of inverse variation-inequality problem constructed by non-Newtonian polytropic operators in finance[J]. AIMS Mathematics, 2023, 8(12): 28753-28765. doi: 10.3934/math.20231472

    Related Papers:

  • This paper aims to explore the inverse variation-inequality problems of a specific type of degenerate parabolic operators in a non-divergence form. These problems have significant implications in financial derivative pricing. The study focuses on analyzing the Hölder continuity of weak solutions by employing cut-off factors.



    加载中


    [1] C. O. Alves, L. M. Barros, C. E. T. Ledesma, Existence of solution for a class of variational inequality in whole $\mathbb{R}^N$ with critical growth, J. Math. Anal. Appl., 494 (2021), 124672. https://doi.org/10.1016/j.jmaa.2020.124672 doi: 10.1016/j.jmaa.2020.124672
    [2] J. Li, C. Bi, Study of weak solutions of variational inequality systems with degenerate parabolic operators and quasilinear terms arising Americian option pricing problems, AIMS Math., 7 (2022), 19758–19769. https://doi.org/10.3934/math.20221083 doi: 10.3934/math.20221083
    [3] T. Ye, W. Liu, T. Shen, Existence of nontrivial rotating periodic solutions for second-order Hamiltonian systems, Appl. Math. Lett., 142 (2023), 108630. https://doi.org/10.1016/j.aml.2023.108630 doi: 10.1016/j.aml.2023.108630
    [4] K. K. Saha, N. Sukavanam, S. Pan, Existence and uniqueness of solutions to fractional differential equations with fractional boundary conditions, Alexandria Eng. J., 72 (2023), 147–155. https://doi.org/10.1016/j.aej.2023.03.076 doi: 10.1016/j.aej.2023.03.076
    [5] G. C. G. dos Santos, N. de A. Lima, R. N. de Lima, Existence and multiple of solutions for a class integro-differential equations with singular term via variational and Galerkin methods, Nonlinear Anal., 69 (2023), 103752. https://doi.org/10.1016/j.nonrwa.2022.103752 doi: 10.1016/j.nonrwa.2022.103752
    [6] F. O. Gallego, H. Ouyahya, M. Rhoudaf, Existence of a capacity solution to a nonlinear parabolic Celliptic coupled system in anisotropic Orlicz-Sobolev spaces, Results Appl. Math., 18 (2023), 100376. https://doi.org/10.1016/j.rinam.2023.100376 doi: 10.1016/j.rinam.2023.100376
    [7] L. Lussardi, E. Mascolo, A uniqueness result for a class of non-strictly convex variational problems, J. Math. Anal. Appl., 446 (2017), 1687–1694. https://doi.org/10.1016/j.jmaa.2016.09.060 doi: 10.1016/j.jmaa.2016.09.060
    [8] M. Boukrouche, D. A. Tarzia, Existence, uniqueness, and convergence of optimal control problems associated with parabolic variational inequalities of the second kind, Nonlinear Anal., 12 (2011), 2211–2224. https://doi.org/10.1016/j.nonrwa.2011.01.003 doi: 10.1016/j.nonrwa.2011.01.003
    [9] A. Dieb, I. Ianni, A. Salda$\mathop {\rm{n}}\limits^{''} $a, Uniqueness and nondegeneracy for Dirichlet fractional problems in bounded domains via asymptotic methods, Nonlinear Anal., 236 (2023), 113354. https://doi.org/10.1016/j.na.2023.113354 doi: 10.1016/j.na.2023.113354
    [10] M. G. Ghimenti, A. M. Micheletti, Compactness and blow up results for doubly perturbed Yamabe problems on manifolds with umbilic boundary, Nonlinear Anal., 229 (2023), 113206. https://doi.org/10.1016/j.na.2022.113206 doi: 10.1016/j.na.2022.113206
    [11] L. Li, M. Wang, Global existence and blow-up of solutions of nonlocal diffusion problems with free boundaries, Nonlinear Anal., 58 (2021), 103231. https://doi.org/10.1016/j.nonrwa.2020.103231 doi: 10.1016/j.nonrwa.2020.103231
    [12] Q. M. Tran, T. T. Vu, H. D. T. Huynh, H. D. Pham, Global existence, blow-up in finite time and vacuum isolating phenomena for a system of semilinear wave equations associated with the helical flows of Maxwell fluid, Nonlinear Anal., 69 (2023), 103734. https://doi.org/10.1016/j.nonrwa.2022.103734 doi: 10.1016/j.nonrwa.2022.103734
    [13] L. Marino, Schauder estimates for degenerate Lévy Ornstein-Uhlenbeck operators, J. Math. Anal. Appl., 500 (2021), 125168. https://doi.org/10.1016/j.jmaa.2021.125168 doi: 10.1016/j.jmaa.2021.125168
    [14] Y. Sun, T. Wu, Hölder and Schauder estimates for weak solutions of a certain class of non-divergent variation inequality problems in finance, AIMS Math., 8 (2023), 18995–19003. https://doi.org/10.3934/math.2023968 doi: 10.3934/math.2023968
    [15] D. Wang, K. Serkh, C. Christara, A high-order deferred correction method for the solution of free boundary problems using penalty iteration, with an application to American option pricing, J. Comput. Appl. Math., 432 (2023), 115272. https://doi.org/10.1016/j.cam.2023.115272 doi: 10.1016/j.cam.2023.115272
    [16] S. Hussain, H. Arif, M. Noorullah, A. A. Pantelous, Pricing American options under Azzalini Ito-McKean skew Brownian motions, Appl. Math. Comput., 451 (2023), 128040. https://doi.org/10.1016/j.amc.2023.128040 doi: 10.1016/j.amc.2023.128040
    [17] Y. Wang, Local Hölder continuity of nonnegative weak solutions of degenerate parabolic equations, Nonlinear Anal., 72 (2010), 3289–3302. https://doi.org/10.1016/j.na.2009.12.007 doi: 10.1016/j.na.2009.12.007
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(952) PDF downloads(47) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog