In this paper, an error bound for linear complementarity problems of strong $ SDD $$ _{1} $ matrices is given. By properties of $ SDD $$ _{1} $ matrices, a new subclass of $ P $-matrices called $ SDD_{1} $-$ B $ is presented, which contains $ B $-matrices. A new error bound of linear complementarity problems for $ SDD_{1} $-$ B $ is also provided, which improves the corresponding results. Numerical examples are given to illustrate the effectiveness of the obtained results.
Citation: Yuanjie Geng, Deshu Sun. Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices[J]. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384
In this paper, an error bound for linear complementarity problems of strong $ SDD $$ _{1} $ matrices is given. By properties of $ SDD $$ _{1} $ matrices, a new subclass of $ P $-matrices called $ SDD_{1} $-$ B $ is presented, which contains $ B $-matrices. A new error bound of linear complementarity problems for $ SDD_{1} $-$ B $ is also provided, which improves the corresponding results. Numerical examples are given to illustrate the effectiveness of the obtained results.
[1] | M. García-Esnaola, J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001 |
[2] | K. G. Murty, Linear complementarity, linear and nonlinear programming, Berlin: Heldermann, 1988. |
[3] | R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, San Diego: Academic Press, 1992. |
[4] | X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matix linear complementary problems, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9 |
[5] | L. Cvetković, V. Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. https://doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037 |
[6] | L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786–794. https://doi.org/10.1007/s10958-015-2401-x doi: 10.1007/s10958-015-2401-x |
[7] | T. Szulc, L. Cvetković, M. Nedović, Scaling technique for partition-Nekrasov matrices, Appl. Math. Comput., 271 (2015), 201–208. https://doi.org/10.1016/j.amc.2015.08.136 doi: 10.1016/j.amc.2015.08.136 |
[8] | L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. https://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3 |
[9] | J. X. Zhao, Q. L. Liu, C. Q. Li, Y. T. Li, Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices, Linear Algebra Appl., 552 (2018), 277–287. https://doi.org/10.1016/j.laa.2018.04.028 doi: 10.1016/j.laa.2018.04.028 |
[10] | M. García-Esnaola, J. M. Peña, $B^{R}_{\pi}$-Matrices and error bounds for linear complementarity problems, Calcolo, 54 (2017), 813–822. https://doi.org/10.1007/s10092-016-0209-9 doi: 10.1007/s10092-016-0209-9 |
[11] | C. Q. Li, P. F. Dai, Y. T. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), 997–1009. https://doi.org/10.1007/s11075-016-0181-0 doi: 10.1007/s11075-016-0181-0 |
[12] | X. Song, L. Gao, $CKV$-Type $B$-matrices and error bounds for linear complementarity problems, AIMS Mathematics, 6 (2021), 10846–10860. https://doi.org/10.3934/math.2021630 doi: 10.3934/math.2021630 |
[13] | A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, New York: Academic Press, 1979. |
[14] | Y. H. Wang, X. N. Song, L. Gao, An infinity norm bound for the inverse of strong $SDD_{1}$ matrices with applications, Japan J. Indust. Appl. Math., 40 (2023), 1287–1304. https://doi.org/10.1007/s13160-023-00576-9 doi: 10.1007/s13160-023-00576-9 |
[15] | J. M. Peña, A class of $P$-matrix with applications to localization of the eigenvalues of a real matrix, SIAM. J. Matrix Anal. A., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342 |
[16] | L. Gao, An alternative error bound for linear complementarily problems involving $B^S$-matrices, J. Inequal. Appl., 2018 (2018), 28. https://doi.org/10.1186/s13660-018-1618-x doi: 10.1186/s13660-018-1618-x |
[17] | M. García-Esnaola, J. M. Peña, A comparison of error bounds for linear complementarity problems of $H$-matrices, Linear Algebra Appl., 433 (2010), 956–964. https://doi.org/10.1016/j.laa.2010.04.024 doi: 10.1016/j.laa.2010.04.024 |