Research article

Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices

  • Received: 17 August 2023 Revised: 09 September 2023 Accepted: 15 September 2023 Published: 22 September 2023
  • MSC : 15A48, 65G50, 90C31, 90C33

  • In this paper, an error bound for linear complementarity problems of strong $ SDD $$ _{1} $ matrices is given. By properties of $ SDD $$ _{1} $ matrices, a new subclass of $ P $-matrices called $ SDD_{1} $-$ B $ is presented, which contains $ B $-matrices. A new error bound of linear complementarity problems for $ SDD_{1} $-$ B $ is also provided, which improves the corresponding results. Numerical examples are given to illustrate the effectiveness of the obtained results.

    Citation: Yuanjie Geng, Deshu Sun. Error bounds for linear complementarity problems of strong $ SDD_{1} $ matrices and strong $ SDD_{1} $-$ B $ matrices[J]. AIMS Mathematics, 2023, 8(11): 27052-27064. doi: 10.3934/math.20231384

    Related Papers:

  • In this paper, an error bound for linear complementarity problems of strong $ SDD $$ _{1} $ matrices is given. By properties of $ SDD $$ _{1} $ matrices, a new subclass of $ P $-matrices called $ SDD_{1} $-$ B $ is presented, which contains $ B $-matrices. A new error bound of linear complementarity problems for $ SDD_{1} $-$ B $ is also provided, which improves the corresponding results. Numerical examples are given to illustrate the effectiveness of the obtained results.



    加载中


    [1] M. García-Esnaola, J. M. Peña, Error bounds for linear complementarity problems for $B$-matrices, Appl. Math. Lett., 22 (2009), 1071–1075. https://doi.org/10.1016/j.aml.2008.09.001 doi: 10.1016/j.aml.2008.09.001
    [2] K. G. Murty, Linear complementarity, linear and nonlinear programming, Berlin: Heldermann, 1988.
    [3] R. W. Cottle, J. S. Pang, R. E. Stone, The linear complementarity problem, San Diego: Academic Press, 1992.
    [4] X. J. Chen, S. H. Xiang, Computation of error bounds for $P$-matix linear complementary problems, Math. Program., 106 (2006), 513–525. https://doi.org/10.1007/s10107-005-0645-9 doi: 10.1007/s10107-005-0645-9
    [5] L. Cvetković, V. Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. https://doi.org/10.1016/j.amc.2008.11.037 doi: 10.1016/j.amc.2008.11.037
    [6] L. Y. Kolotilina, Bounds for the inverses of generalized Nekrasov matrices, J. Math. Sci., 207 (2015), 786–794. https://doi.org/10.1007/s10958-015-2401-x doi: 10.1007/s10958-015-2401-x
    [7] T. Szulc, L. Cvetković, M. Nedović, Scaling technique for partition-Nekrasov matrices, Appl. Math. Comput., 271 (2015), 201–208. https://doi.org/10.1016/j.amc.2015.08.136 doi: 10.1016/j.amc.2015.08.136
    [8] L. Y. Kolotilina, Some bounds for inverses involving matrix sparsity pattern, J. Math. Sci., 249 (2020), 242–255. https://doi.org/10.1007/s10958-020-04938-3 doi: 10.1007/s10958-020-04938-3
    [9] J. X. Zhao, Q. L. Liu, C. Q. Li, Y. T. Li, Dashnic-Zusmanovich type matrices: A new subclass of nonsingular $H$-matrices, Linear Algebra Appl., 552 (2018), 277–287. https://doi.org/10.1016/j.laa.2018.04.028 doi: 10.1016/j.laa.2018.04.028
    [10] M. García-Esnaola, J. M. Peña, $B^{R}_{\pi}$-Matrices and error bounds for linear complementarity problems, Calcolo, 54 (2017), 813–822. https://doi.org/10.1007/s10092-016-0209-9 doi: 10.1007/s10092-016-0209-9
    [11] C. Q. Li, P. F. Dai, Y. T. Li, New error bounds for linear complementarity problems of Nekrasov matrices and $B$-Nekrasov matrices, Numer. Algor., 74 (2017), 997–1009. https://doi.org/10.1007/s11075-016-0181-0 doi: 10.1007/s11075-016-0181-0
    [12] X. Song, L. Gao, $CKV$-Type $B$-matrices and error bounds for linear complementarity problems, AIMS Mathematics, 6 (2021), 10846–10860. https://doi.org/10.3934/math.2021630 doi: 10.3934/math.2021630
    [13] A. Berman, R. J. Plemmons, Nonnegative matrices in the mathematical sciences, New York: Academic Press, 1979.
    [14] Y. H. Wang, X. N. Song, L. Gao, An infinity norm bound for the inverse of strong $SDD_{1}$ matrices with applications, Japan J. Indust. Appl. Math., 40 (2023), 1287–1304. https://doi.org/10.1007/s13160-023-00576-9 doi: 10.1007/s13160-023-00576-9
    [15] J. M. Peña, A class of $P$-matrix with applications to localization of the eigenvalues of a real matrix, SIAM. J. Matrix Anal. A., 22 (2001), 1027–1037. https://doi.org/10.1137/S0895479800370342 doi: 10.1137/S0895479800370342
    [16] L. Gao, An alternative error bound for linear complementarily problems involving $B^S$-matrices, J. Inequal. Appl., 2018 (2018), 28. https://doi.org/10.1186/s13660-018-1618-x doi: 10.1186/s13660-018-1618-x
    [17] M. García-Esnaola, J. M. Peña, A comparison of error bounds for linear complementarity problems of $H$-matrices, Linear Algebra Appl., 433 (2010), 956–964. https://doi.org/10.1016/j.laa.2010.04.024 doi: 10.1016/j.laa.2010.04.024
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(803) PDF downloads(42) Cited by(2)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog