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1. Introduction

Many fundamental problems in optimization and mathematical programming can be described
as linear complementarity problems, such as quadratic programming, nonlinear obstacle problems,
invariant capital stock, the Nash eqilibrium point of a bimatrix game, optimal stopping, free boundary
problems for journal bearing and so on, see for instance, [1-4].

Some basic definitions for the special matrices are given as follows: let n be an integer number,
N ={1,2,...,n}, and let R™" be the set of all real matrices of order n. Matrix A = (a;;) € R™" is called
a Z-matrix, if a;; < 0 for any i # j; a P-matrix, if all its principal minors are positive; an M-matrix,
if A is a Z-matrix with eigenvalues whose real parts are non-negative; an H-matrix, if its comparison
matrix (A) = (a;;) i1s an M-matrix, where

G = |aij|, if i=j
Y —Ia,-jl, lf = ]

Linear complementarity problem of matrix A, denoted by LCP(A, g), is to find a vector x € R" such


http://www.aimspress.com/journal/Math
http://dx.doi.org/10.3934/math.20231384

27053

that
Ax+q20, (Ax+¢'x=0, x>0, (1.1)

or to prove that no such vector x exists, where A € R™" and g € R". One of the essencial problems in
LCP(A, q) is to estimate

max |[(/ = D + DA) ||,
de[0,1]"

where D = diag(d;),d = (d,,d>,--- ,d,),0<d; <1,i=1,2,---,n. Itis well known that when A is a

P-matrix, there is a unique solution to linear complementarity problems.
In [4], Chen et al. gave the following error bound for LCP(A, g),

llx = X"l < max [I(1 =D+ DAY lollr(X)llws  Yx € R, (1.2)
<[0,1]"

where x* is the solution of LCP(A, q), r(x) = min{x,Ax + g}, and the min operator r(x) denotes
the componentwise minimum of two vectors. It is well known that when real H-matrix A with
positive diagonal entries is a subclass of P-matrices, error bound of LCP(A, g) can be obtained by
formula (2.4) in [4]. Furthermore, to avoid the high-cost computations of the inverse matrix in (2.4),
some easily computable bounds for LCP(A, q) are derived for the different subclass of H-matrices,
such as Ostrowski matrices [5], QN-matrices [6], Nekrasov matrices [7], S-S DDS matrices [8] and
DZ-matrices [9], which only depends on the entries of the involved matrix A.

When the class of involved matrices is subclass of P-matrices that are not H-matrices, error bounds
of LCP(A, g) also need to be studied, such as, Bﬁ-matrices [10], B-Nekrasov matrices [11] and CKV-
type-B-matrices [12].

In this paper, we apply upper bound for infinity norm of the inverse of strong S DD; matrix to
estimate the error for linear complementarity problems of strong S DD; matrices and strong S DD,-B
matrices. Numerical examples show that the obtained results can improve other existing bounds.

2. Preliminaries

In this section, some definitions and lemmas are given. Assume that S denotes a nonempty subset
of Nand § := N\S the complement of S. For eachi € N, r; (A) := ), |a;jl, rl.S(A) = 2 laijl.

J# JeS\{i}
Definition 1. [13] Matrix A = (a;;) € R™" is called a strictly diagonally dominant (S DD) matrix if,

forallie N,
la;i| > r; (A).

Definition 2. [14] Matrix A = (a;;) € R™" is said a strong S DD, matrix if there exists a subset S of N
such that

o (i) lail > ri(A), for i€ S satisfying r5(A) =0,

o (11) |ajj| > rj(A), fij S 5;,

e (iil) [la;| — rl.S(A)]lajjl > rf(A)rj(A), forie S and j € S such that a;j # 0.

Definition 3. Let A = (a;;) € R™" (n > 2) be a matrix with the form of A = B* + C. We say that A is a
strong S DD-B matrix if B* is a strong S DD matrix with positive diagonal entries, where
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+ + + +

a“—rl aln—rl I"l I"l

+ _ . . _ . .
B" = (b;j) = : : , C=] ol 2.1)

+ + + +

ap —r, - Ay —T, r, r,

and r/" = max {O,a,-j | j# i}.
There is an equivalence definition of B-matrices in [1, 15], which is closely related to strictly
diagonally dominant matrices.

Definition 4. [15] Matrix A = (a;;) € R™" is called a B-matrix if, for all i € N,
Zn:aik>0, l[iaikJ>aij, V]?&l
k=1 n k=1

Definition 5. [1] Let A = (a;;) € R™" and A = B* + C, where B" is defined as in (2.1). We say that A
is a B-matrix if B* is an S DD matrix.

Next, we will introduce some useful lemmas.

Lemma 1. [14] Let A = (a;;) € R be a strong S DD, matrix. Then,

§ 1 1 ja| + rf(A)
[A”"|o < max{ max ————, max ———————,  max — )
iesS =0 1l = 1i(A)" s lajil = 1i(A)" ies.jes a0 (|ag| — S (A)ay | — 15 (A)r,(A)

Lemma 2. [14] If matrix A = (a;;) € R™" is a strong S DD, matrix, then A is a nonsingular H-matrix.

Lemma 3. [15] Let A = (a;;) € R™" be a nonsingular M-matrix, and let P be a nonnegative matrix
with rank 1. Then A + P is a P-matrix.

Lemma 4. Let A = (a;;) € R™" (n > 2) be a strong S DD -B matrix. Then A is a P-matrix.

Proof. By Definition 3, we have that C in (2.1) is a nonnegative matrix with rank 1. By Lemma 2, we
get that B* is a nonnegative M-matrix. We can conclude that A is a P-matrix from Lemma 3. O

Remark 1. From Definitions 1-5, Lemmas 2 and 4, we have the following relationships:
S DD matrices C strong S DD matrices C H-matrices,

B-matrices C strong S DD,-B matrices C P-matrices.

Lemma 5. Let A = (a;;) € R™" be a strong S DD\ matrix. Then A= (aij) = I-D+ DA is also a strong
S DD, matrix, where D = diag (d;) with 0 < d; < 1, Vi € N.

Proof. Since A = I — D + DA = (&), then,

G = 1 -d; +diaij, i =],
Y d,-aij, i #+ _]
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Based on A is a strong S DD, matrix and D = diag(d;), 0 < d; < 1(Vi € N), by Lemma 3, we can
get the following results.

1) For i € S, satisfying r¥ (A) = 0, by Definition 3, it holds that if d; = 0, then

@il = 1> 0 = |diagl = diri(A) = ri(A).
If d; # 0, then N
|aii| = |1 = d; + dia;| > |dia;| > diri(A) = ri(A).
2) For j € S, it follows that if d; = 0, then
|&jj| =1>0= |djajj| = djl"j(A) = I"j(Av).
If d; # 0, then N
|Zl”| = |1 — dj + dJCl”| > |dJClJ]| > d]rj(A) = I"](A)

3)ForiesS, je S, satisfying a;; # 0, i.e., d; # 0 and a;; # 0, we can obtain that if d; # 0, d; = 0,
then
(1 —d; + dia;| — dﬂ’f (A))
didj(laii| - 7’,~S (A))|Cljj|
did;r} (A)ri(A) = 1} (A)rj(A).

(Il — 5 (A)laj;|

\

Ifd; # 0,d; # 0, then

(Il — 5 (A)laj;|

(1 — dj + djajj) — dl(l - dj + djajj) + di[aii - I’f(A)]
—didjla;; — riS (A)] +dd;a;aj;j — didj’”is (A)
> ddjllag| - r? (A)llajl
> did;ri (A)ri(A) = 1} (A)ri(A).
Therefore, Aisa strong S DD; matrix, the conclusion follows. ]

Lemma 6. [16] Lety > 0 and n > 0. Then for any x € [0, 1],

1 < 1 nx 1
l-x+xy  min{y,1}7 1-x+xy ™ y

Lemma 7. [17]IfA = (a;;) € R™" is an S DD matrix, then

max
de[0,1]"

(I—D+DA)1||m<max{ : ,1}.

fggl {laiil — ri(A)}
Lemma 8. [1] Let A = (a;j) € R™" be a B-matrix, and let B* be the matrix in (3). Then

-1
I-D+DA) o £ ———,
drer[loa}ﬁ””( )l min {3, 1}

where 8 = m}\}l B}, Bi = |biil — i |bijl.

J#
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3. Error bound for linear complementarity problems involving strong S DD, matrices

In this section, new error bound of LCP(A, g) is provided when A is a strong S DD, matrix.

Th(i?rem 1. Let A = (a;;) € R™", n > 2, be a strong S DD, matrix with poistive diagonal entries, and
let A = (a;j) =1 — D + DA, where D = diag (d;) with 0 < d; < 1. Then

1
max ||/ - D+ DA) '« < max{ max - ,
de[o,1]" iS5 (4)=0 TN {ai; — ri(A), 1}

max ! , n(A)} , 3.1

is min{aj; - ri(A), 1}

where

4 ari ) 3 (4)
M\ min{ai-rS )1} minfay;1}
n(A) = max

i€S, jeS ,a;;#0 (aii — rf (A)) ajj— V?(A)FJ(A).

Proof. Since A= (aij) = 1 — D + DA, then from Lemma 5, we know that Aisa strong S DD, matrix
with positive diagonal entries. By Lemma 1, it holds that

— 1 1
IA e < max max ——————, max ——,
ies ¥ (A)=0 |ay| — ri(A)  jeS |aj|l —ri(A)
i+ (A
max @ (3.2)
i€s.jeS ;20 (|| — r? (A)aj| — r} (A)ri(A)

Note that ri(X) = d;ri(A), rj(X) =d;ri(A)forallie §, j e S. Next, we divide into three cases to
prove the result. L B )
Case 1. For i € S, satisfying ¥ (A) = 0, it follows that d; = 0 or r (A) = 0. If d; = 0 and 17 (A) = 0,

i €S, then
1 1 1

— = = 1 .
Gl — A T—di+dag—drA) " minfag - ri(A). 1]

If d; # 0 and r?(A) =0,i €S, by Lemma 6, we have

1 1 1
= < .
a; — ri(;() 1 —d; + dia;; — diri(A) — min{a; — ri(A), 1}

Ifd; =0and r?(A) #0,i € S, then there exists j € S such that g, ; # 0. Thus, by Lemma 6, we get
1 1 _
a;; — ri(A) 1 —d; + da;i — diri(A)
| —d; +djaj; +dir} (A)
(1 —d; + dia;; — dir? (A)(1 — d; + dja;)) — dirs (A)d;ri(A)
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I~dj+d;ajj+dirS (A)
(1-di+diai—dir (A))(1-d;+djaj))

- dirs (A)
(1-di+diai—dirs (A))(1-dj+dja;))
i N R @)
min {a;-rS (A1} (ai-r5 (4)) minfa;;,1}
B (i)

(a0

. ari ) S (4)
M\ min{ai—rS ()1}~ minfa;.1}

(i = ¥ @) aj; — rf (Ayrya)

So, it holds that
4 aii=r3 (A) 7 @)
1 1 4 min {a,-,-—ris (A),l} min{ajj,l}
max ———= <max max - , 12 —
eSS (A)=0 d;; — ri(A) ies S (=0 Min{a;; — ri(A), 1} ies.jeS.a;j%0 (al-,- - (A)) aj;—ri(A)ri(A)

Case 2. For j € S, if d; = 0, then
1 1 1
— = = 1 < .
a;j—riA) 1-dj+djaj—diriA) min {ajj - ri(A), 1}

If d; # 0, by Lemma 6, we get
I 1 3 1
aj;—riA) 1=d;j+dja;=dirfA) " min{a,; - ri(A). 1}

Case3.Forie S and j € S, such that a;; # 0, it holds that d; # 0 and g;; # 0. Thus, by Lemma 6,
it holds that

zljj"'r?(g) 1—dj+djajj+diri§(A)
@i = s (ADa; = rf (A)ry(A) (1= d; + dia — dirf (D)1 = d; + djajj) = dirf (A)d;r(A)
I=dj+djajj+dirs (A)
(l —di+d;aj; —dﬂ’f (A))(l —dj+djajj)

|- dirs (A)d;ri(A)
(1-di+diai—dirs (A))(1-dj+dja;))
1 4 S (4)
_ min {ai—rS @t} (ai=rS @) min{a;;1)
5 (A)rj(A)
a__( wrid) 2w )
H\ min{ai-rS )1} minfay;1}
(ai = 5 (A)) aj; = 13 (A)ri(A)
From Cases 1-3, the conclusion follows. m]
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Next, let’s use the following two examples to illustrate the advantages of our results.

4 0 35
A=(5 7 1 |.

Example 1. Consider the matrix:

0 01 6

Then, A is not only an S DD matrix but also a strong S DD, matrix for § = {1,2}. From Lemma 7, we
have

max ||(I = D + DAY Y|, < 2.
de[O,l]3

By Theorem 1, we get

max |[(I = D + DA) | < 1.28.

del0,113
Example 2. Consider the tri-diagonal matrix A € R™" arising from the finite difference method for
free boundary problems [4], where

b+asin(%) c 0 0
a b+asin(%) c 0
A=
0 a b+a/sin("n;l) c
0 0 a b+ asin(l)

Take that n = 500, a = -0.5,b =3, ¢ = -2.3 and @ = 0. Then A is not only an S DD matrix but also a
strong S DD; matrix for § = {2,---,499}. From Lemma 7, we get

max ||( = D + DA) Y. < 5.

de[0,1]7%

By Theorem 1, we have

max ||(I = D+ DA)™Y||. < 2.2677.
de[O,l]500

Example 3. Consider the matrix:

4 1 0 1 3
50 100 0 20 50
A= 2 3 10 2 O
0O 7 3 10 O
1 0 1 0 4

It is easy to verify that A is a strong S DD, matrix for § = {1, 2,4}, but not an S DD matrix and nor
S-S DD matrix for any nonempty subset S of N. By Theorem 1, we have

max ||( = D + DA)™ Y|l < 16.
de[O,l]5
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4. Error bound for linear complementarity problems involving strong S DD;-B matrices

In this section, a new error bound of LCP(A, g) is presented when A is a strong S DD, -B matrix.

Theorem 2. Let A = (a;;) € R™" be a strong S DD-B matrix with the form of A = B* + C, and let
= (b;j) be the matrix in (2.1). Denote Ap = I — D + DA, where D = diag (d;) with 0 < d; < 1. Then

max
de[0,1]"

(I-D+DA|.

1
< ¢(B"):=((m-1)max{ max ,
¢ i€S s (B*)=0 min {b; — ri(B*), 1}

max ! (B 4.1)
jes mm{ — rj(BY), 1}

where

bi—r$ (B*) rS(BY)
bij (min{bii—rg(B") 1} " mino,. ‘})
n(BY) := max
ies.ieSiby20 (by — 15 (B*)) by — 13 (B*)ry(B*)
Proof. For D = diag (d;) with 0 < d; < 1(Vi € N), we have

Ap=I1-D+DA=(-D+DB")+DC = B}, + Cp,

where B}, = (b; i)=1-D+ DB" and Cp = DC. Notice that B" is a strong S DD; matrix with positive
diagonal entries, then by Lemma 5, it follows that B, = I — D + DB" is also a strong S DD; matrix
with positive diagonal entries. Similarly as the proof of Theorem 2.2 in [1], we can obtain:

sl < [+ s col | -lBp) Il < - Dllsp) |

We now bound ||(Bz; -1 ||(>o By Lemma 1, it holds that

1
(Bp )1 <max| max ——————— max————, wii(Bh) ¢,
” ” ieS:rS (By)= ~0 bl - rz(BD) jes |bjjl = ri(B}) 7P

where

|B]J| + I"E(B+)
pi(Bp) == max
ies.ieSiby20 ([bil — 15 (BY)) 1Byl — 15 (By)ri(Bh)
Next, we divide into three cases to prove the conclusion.
Case 1. Fori € S, satisfying rS(B ) = 0, then rS(B+) =0ord; =0.Ifd; =0, rS(B+) #0,i€S,
then there exists j € S such that a;; ; # 0. Hence, by Lemmas 6 and 7, we get
1

B! < N
”( D ||°° = ,-es;rr?fg;):o |biil — ri(Bp)
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1
1 —d;+db; —dir(B*)
1 + S (BY)
min {bi=r$ (B} (by—rS (B5)) min{bj;,1}
< max _
i€S ,j€S :b;;#0 __r(BY)ri(B*)

(bir=r$ (B))bj;

bii—rS (BY) S (BY)
b . i + - i
H\ min {b—rS By}~ min{b;;.1}
= max — =n(B").

iES,jG?:b,‘ﬂtO (bii — }’f(B+)) b” - V;g(B+)r](B+)

Ifd;, =0, rS(B y=0,i€ S, we have

By, <

1 1
max ————— < max - .
ies:S 83)=0 1Dl = ri{(B}) ~ iesSgry=0 min{b;; — ri(B*), 1}

Case 2. For j € S, it holds that

||(B ) 1|| ————— < max

1 1

je§ |bjj|—VJ(B ) jes min{bjj—rj(BJr),l}.

Case3.Forie § and j € S, such that l~9,-j # 0, then d; # 0 and b;; # 0. Thus, by Lemma 6, we have

bi;+ rS (Bp)
jBo < max
€S, j€S :b;;#0 (b,-,- - (BD)) —r; (B})ri(B})
S
1- dj + djbj] + d,-rl. (B+)
= max —
I~dj+d;bjj+dir’ (BY)
(1—d,‘+d;b,‘,‘—d,‘rf (B*))(l—dj+d_,'b/'_,')
= max -~
i€S.jeS:bi#0 | _ dir} (B*)d;r;(B*)
(1=di+dibi—dirs (B*))(1-dj+d;b )
i r B
+
min {bi=r$ B*).1}  (bi=rS (B*)) min{b;;.1}
< max —
i€S.jeS :b;j#0 | = BB
(bi=r5 B))b5
b bi—rS (B) S (BY)
M\ min {b—rS (8+)1} ~ min{b;;.1}
i +
= max S — = I](B )
ie$, j€S :b; #0 (b,-,- -7 (B+)) bj; —ri (B*)rj(B*)
Consequently, from Cases 1-3, the conclusion follows. O

The bound in Theorem 2 also holds for B-matrix, because B-matrix is a subclass of strong S DD -
B-matrix. Next, we will indicate that the bound in Theorem 2 is better than that in Lemma 8 in some

cases.
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Theorem 3. Let A = (a;;) € R™" be a B-matrix with A = B + C, and let B* = (b;;) be the matrix
in (2.1). If 0 < b; < 1(V¥i € N), then

(B < — “2)

rirégl{ﬁ,l}

where {(B") and g are defined as in Theorem 2 and Lemma 8, respectively.
Proof. By 0 < b;; <1 (Vi € N), we have

1 1 1
max = max

- < —
ies:S (8+=0 Min{b;; — ri(B*), 1} jc5.5g+)=0 bii — ri(BY) min 8,1}

and

1 1 1
max = max < — .
ies min{b; - ri(B*), 1} Jes bij—ri(BY)  min{5. 1)

Forie S and j € S, such that b;; # 0, it follows that if b; — r;(B*) < b;; — r;(B"), then

1

B") < < :
M) = ) S min B )

If bj; — ri(B*) < b — ri(B"), then

M S B S min A1)

Therefore, the conclusion follows. O
The following numerical examples show the validity of the error bounds for strong S DD, -B matrix.

Example 4. Consider the matrix:

0.7 =02 -02 -0.2
0 05 01 0.1
0 01 04 0.1
0 02 02 06

A=

We can write it as A = B* + C, where

07 -02 -02 -02 0O 0 0 O
B = -0.1 04 0 0 C= 0.1 0.1 0.1 0.1
1 -01 0 0.3 O | 01 01 01 0.1

-02 0 0 0.4 02 02 02 02

AIMS Mathematics Volume 8, Issue 11, 27052-27064.
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It is easy to check that A is a B-matrix, consequently, a strong S DD,-B matrix. By Lemma 8, we have

max |[(I — D + DA)™|| < 30.
de[O,l]“

When S = {1}, by Theorem 2, we have

max |[(I — D + DA) || < 25.
de[O,l]4

It is shown by Figure 1, in which the first 1000 matrices are given by the following MATLAB codes,
that 25 is better than 30 for max ||(I—D+DA)™!||... Blue stars in Figure 1 represent the ||(I—D+DA) ™|
when matrices D come from 1000 different random matrices in [0, 1].

30 T T T T T T T T T

The bound in Theorem 2

The bound in Lemma &

25

0 100 200 300 400 S00 600 700 800 900 1000

Figure 1. ||(I - D + DA)™!||., for the first 1000 matrices D generated by diag(rand (5,1)).
MATLAB codes: for i = 1:1000; D=diag(rand (5,1)); end.

Example 5. Consider the matrix:

6 -4 -1 O
-2 4 05 -2
-2 0 3 0
-2 0 0 6

A =

Matrix A can be splitinto A = B* + C, where

6 -4 -1 O 0 00O
-2 4 =05 -2 0 00O

+ —
B = -2 0 3 0V €= 0 00O
-2 0 0 6 00O00O

AIMS Mathematics Volume 8, Issue 11, 27052-27064.
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It is easy to verify that A is neither an S DD matrix nor a B-matrix. On the other hand, A is a strong
S DD;-B matrix for § = {1,2,3}. By Theorem 2, we get

max ||( = D + DA) Y. < 4.2.
de[O,l]4

5. Conclusions

Based on the properties strong S DD, matrices, we introduce a new subclass of P-matrices called
strong S DD,-B matrices. Moreover, we apply upper bound for the infinity norm of the inverse of
S DD; matrices to estimate error bounds for linear complementarity problems of S DD; matrices and
S DD,-B matrices, which is useful for free boundary problems. Numerical examples are given to show
the sharpness of the proposed bounds. In the future, based on the proposed infinity norm bound, we
will explore the computable global error bounds of extended vertical linear complementarity problems
for S DD matrices and S DD;-B matrices.
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