Research article

Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces

  • Received: 10 July 2023 Revised: 25 August 2023 Accepted: 05 September 2023 Published: 15 September 2023
  • MSC : 42B35, 26D15, 46B25, 47G10

  • This research paper focuses on establishing a framework for grand Herz-Morrey spaces defined over the $ p $-adic numbers and their associated $ p $-adic intrinsic square function. We will define the ideas of grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $ and $ p $-adic intrinsic square function. Moreover, the corresponding operator norms are estimated. Grand $ p $-adic Herz-Morrey spaces with variable exponent is the generalization of $ p $-adic Herz spaces. Our main goal is to obtain the boundedeness of $ p $-adic intrinsic square function in grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $. The boundedness is proven by exploiting the properties of variable exponents in these function spaces.

    Citation: Babar Sultan, Mehvish Sultan, Aziz Khan, Thabet Abdeljawad. Boundedness of an intrinsic square function on grand $ p $-adic Herz-Morrey spaces[J]. AIMS Mathematics, 2023, 8(11): 26484-26497. doi: 10.3934/math.20231352

    Related Papers:

  • This research paper focuses on establishing a framework for grand Herz-Morrey spaces defined over the $ p $-adic numbers and their associated $ p $-adic intrinsic square function. We will define the ideas of grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $ and $ p $-adic intrinsic square function. Moreover, the corresponding operator norms are estimated. Grand $ p $-adic Herz-Morrey spaces with variable exponent is the generalization of $ p $-adic Herz spaces. Our main goal is to obtain the boundedeness of $ p $-adic intrinsic square function in grand $ p $-adic Herz-Morrey spaces with variable exponent $ {M\dot{K} ^{\alpha, u), \theta}_{ s(\cdot)}(\mathbb{Q}^n_p)} $. The boundedness is proven by exploiting the properties of variable exponents in these function spaces.



    加载中


    [1] V. A. Avetisov, A. K. Bikulov, V. A. Osipov, $p$-Adic models for ultrametric diffusion in conformational dynamics of macromolecules, P. Steklov I. Math., 245 (2004), 48–57.
    [2] V. A. Avetisov, A. K. Bikulov, V. A. Osipov, $p$-Adic description of characteristic relaxation in complex systems, J. Phys. A-Math. Gen., 36 (2003), 4239–4246. https://doi.org/10.1088/0305-4470/36/15/301 doi: 10.1088/0305-4470/36/15/301
    [3] B. Dragovich, A. Y. Khrennikov, S. V. Kozyrev, I. V. Volovich, On $p$-Adic mathematical physics, $P$-Adic Numbers Ultra., 1 (2009), 1–17. https://doi.org/10.1134/S2070046609010014 doi: 10.1134/S2070046609010014
    [4] L. F. C. Cortés, H. Rafeiro, Variable exponent Lebesgue spaces and Hardy-Littlewood maximal function on $p$-Adic numbers, $P$-Adic Numbers Ultra., 12 (2020), 90–111. https://doi.org/10.1134/S2070046620020028 doi: 10.1134/S2070046620020028
    [5] L. F. C. Cortés, H. Rafeiro, Fractional operators in $p$-Adic variable exponent Lebesgue spaces and application to $p$-Adic derivative, J. Funct. Space., 2021 (2021).
    [6] N. Sarfraz, M. Aslam, M. Zaman, F. Jarad, Estimates for $p$-Adic fractional integral operator and its commutators on $p$-Adic Morrey-Herz spaces, J. Inequal. Appl., 2022 (2022), 1–17. https://doi.org/10.1186/s13660-022-02829-6 doi: 10.1186/s13660-022-02829-6
    [7] A. Hussain, N. Sarfraz, I. Khan, A. Alsubie, N. N. Hamadneh, The boundedness of commutators of rough $p$-Adic fractional Hardy type operators on Herz-type spaces, J. Inequal. Appl., 2021 (2021), 123. https://doi.org/10.1186/s13660-021-02650-7 doi: 10.1186/s13660-021-02650-7
    [8] N. M. Chuong, D. V. Duong, The $p$-Adic weighted Hardy-Cesáro operators on weighted Morrey-Herz space, $P$-Adic Numbers Ultra., 8 (2016), 204–216. https://doi.org/10.1134/S207004661603002X doi: 10.1134/S207004661603002X
    [9] N. M. Chuong, D. V. Duong, K. H. Dung, Weighted Lebesgue and central Morrey estimates for $p$-Adic multilinear Hausdorff operators and its commutators, Ukr. Math. J., 73 (2021), 979–1004. https://doi.org/10.1007/s11253-021-01983-2 doi: 10.1007/s11253-021-01983-2
    [10] K. H. Dung, D. V. Duong, N. D. Duyet, Weighted Triebel-Lizorkin and Herz spaces estimates for $p$-Adic Hausdorff type operator and its applications, Anal. Math., 48 (2021), 717–740. https://doi.org/10.1007/s10476-022-0129-7 doi: 10.1007/s10476-022-0129-7
    [11] B. Sultan, M. Sultan, M. Mehmood, F. Azmi, M. A. Alghafli, N. Mlaik, Boundedness of fractional integrals on grand weighted Herz spaces with variable exponent, AIMS Math., 8 (2023), 752–764. https://doi.org/10.3934/math.2023036 doi: 10.3934/math.2023036
    [12] B. Sultan, F. Azmi, M. Sultan, T. Mahmood, N. Mlaiki, N. Souayah, Boundedness of fractional integrals on grand weighted Herz-Morrey spaces with variable exponent, Fractal Fract., 6 (2022), 660. https://doi.org/10.3390/fractalfract6110660 doi: 10.3390/fractalfract6110660
    [13] B. Sultan, M. Sultan, I. Khan, On Sobolev theorem for higher commutators of fractional integrals in grand variable Herz spaces, Commun. Nonlinear Sci., 2023, 107464. https://doi.org/10.1016/j.cnsns.2023.107464 doi: 10.1016/j.cnsns.2023.107464
    [14] M. Sultan, B. Sultan, A. Aloqaily, N. Mlaiki, Boundedness of some operators on grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 12964–12985. https://doi.org/10.3934/math.2023653 doi: 10.3934/math.2023653
    [15] S. Bashir, B. Sultan, A. Hussain, A. Khan, T. Abdeljawad, A note on the boundedness of Hardy operators in grand Herz spaces with variable exponent, AIMS Math., 8 (2023), 22178–22191. https://doi.org/10.3934/math.20221130 doi: 10.3934/math.20221130
    [16] M. Sultan, B. Sultan, A. Khan, T. Abdeljawad, Boundedness of Marcinkiewicz integral operator of variable order in grand Herz-Morrey spaces, AIMS Math., 8 (2023), 22338–22353. https://doi.org/10.3934/math.20221139 doi: 10.3934/math.20221139
    [17] B. Sultan, F. Azmi, M. Sultan, M. Mehmood, N. Mlaiki, Boundedness of riesz potential operator on grand Herz-Morrey spaces, Axioms, 11 (2022), 583. https://doi.org/10.3390/axioms11110583 doi: 10.3390/axioms11110583
    [18] B. Sultan, M. Sultan, Q. Q. Zhang, N. Mlaiki, Boundedness of Hardy operators on grand variable weighted Herz spaces, AIMS Math., 8 (2023), 24515–24527. https://doi.org/10.3934/math.20221250 doi: 10.3934/math.20221250
    [19] A. Hussain, N. Sarfraz, I. Khan, A. M. Alqahtani, Estimates for commutators of bilinear fractional $p$-Adic Hardy operator on Herz-type spaces, J. Funct. Space., 2021 (2021), 7. https://doi.org/10.1155/2021/6615604 doi: 10.1155/2021/6615604
    [20] N. Sarfraz, D. Filali, A. Hussain, F. Jarad, Weighted estimates for commutator of rough $p$-Adic fractional Hardy operator on weighted $p$-Adic Herz-Morrey spaces, J. Math., 2021 (2021), 14. https://doi.org/10.1155/2021/5559815 doi: 10.1155/2021/5559815
    [21] A. Ajaib, A. Hussain, Weighted CBMO estimates for commutators of matrix Hausdorff operator on the Heisenberg group, Open Math., 18 (2020), 496–511. https://doi.org/10.1515/math-2020-0175 doi: 10.1515/math-2020-0175
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(939) PDF downloads(68) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog