Research article

Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions

  • Received: 06 August 2022 Revised: 14 October 2022 Accepted: 24 October 2022 Published: 07 November 2022
  • MSC : 35R12, 60H15

  • In this article, we study the existence and stability results of mild solutions for random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups and resolvent operators in Hilbert spaces. Initially, we prove the existence of mild solutions using Hausdorff measures of noncompactness and M$ \ddot{o} $nch fixed point theorem. Then, we explore the stability results which includes continuous dependence of initial conditions, Hyers-Ulam stability and mean-square stability of the system by developing some new analysis techniques and establishing an improved inequality. Finally, we propose an example to validate the obtained results.

    Citation: Dumitru Baleanu, Ramkumar Kasinathan, Ravikumar Kasinathan, Varshini Sandrasekaran. Existence, uniqueness and Hyers-Ulam stability of random impulsive stochastic integro-differential equations with nonlocal conditions[J]. AIMS Mathematics, 2023, 8(2): 2556-2575. doi: 10.3934/math.2023132

    Related Papers:

  • In this article, we study the existence and stability results of mild solutions for random impulsive stochastic integro-differential equations (RISIDEs) with noncompact semigroups and resolvent operators in Hilbert spaces. Initially, we prove the existence of mild solutions using Hausdorff measures of noncompactness and M$ \ddot{o} $nch fixed point theorem. Then, we explore the stability results which includes continuous dependence of initial conditions, Hyers-Ulam stability and mean-square stability of the system by developing some new analysis techniques and establishing an improved inequality. Finally, we propose an example to validate the obtained results.



    加载中


    [1] A. Anguraj, M. Mallika Arjunan, E. M. Hernández, Existence results for an impulsive partial neutral functional differential equations with state-dependent delay, Appl. Anal., 86 (2007), 861–872. https://doi.org/10.1080/00036810701354995 doi: 10.1080/00036810701354995
    [2] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Singapore: World Scientific, 1989. https://doi.org/10.1142/0906
    [3] X. Yang, X. Li, Q. Xi, P. Duan, Review of stability and stabilization for impulsive delayed systems, Math. Biosci. Eng., 15 (2018), 1495–1515. https://doi.org/10.3934/mbe.2018069 doi: 10.3934/mbe.2018069
    [4] M. Benchohra, J. Henderson, S. Ntouyas, Impulsive differential equations and inclusions, New York: Hindawi Publishing Corporation, 2006. https://doi.org/10.1155/9789775945501
    [5] A. Anguraj, S. Wu, A. Vinodkumar, Existence and exponential stability of semilinear functional differential equations with random impulses under non-uniqueness, Nonlinear Anal. Theor., 74 (2011), 331–342. https://doi.org/10.1016/j.na.2010.07.007 doi: 10.1016/j.na.2010.07.007
    [6] S. Wu, X. Guo, Y. Zhou, p-Moment stability of functional differential equations with random impulses, Comput. Math. Appl., 52 (2006), 1683–1694. https://doi.org/10.1016/j.camwa.2006.04.026 doi: 10.1016/j.camwa.2006.04.026
    [7] M. A. Almalahi, S. K. Panchal, Some properties of implicit impulsive coupled system via $\varphi$- Hilfer fractional operator, Bound. Value Probl., 2021 (2021), 67. https://doi.org/10.1186/s13661-021-01543-4 doi: 10.1186/s13661-021-01543-4
    [8] M. A. Almalahi, S. K. Panchal, F. Jarad, Results on implicit fractional pantograph equations with Mittag-Leffler kernel and nonlocal condition, J. Math., 2022 (2022), 9693005. https://doi.org/10.1155/2022/9693005 doi: 10.1155/2022/9693005
    [9] X. Mao, Stochastic differential equations and applications, Chichester: M. Horwood, 1997.
    [10] B. Oksendal, Stochastic differential equations, Berlin, Heidelberg: Springer, 2003. https://doi.org/10.1007/978-3-642-14394-6
    [11] D. Chalishajar, K. Ramkumar, A. Anguraj, K. Ravikumar, M. A. Diop, Controllability of neutral impulsive stochastic functional integro-differential equations driven by a fractional Brownian motion with infinite delay via resolvent operator, J. Nonlinear Sci. Appl., 15 (2022), 172–185. http://doi.org/10.22436/jnsa.015.03.01 doi: 10.22436/jnsa.015.03.01
    [12] K. Ramkumar, K. Ravikumar, E. Elsayed, Well-posedness and stability of time-dependent impulsive neutral stochastic partial imtegro-differential equations with fractional Brownian motion and Poisson jumps, J. Math. Ext., 16 (2022), 1–25.
    [13] K. Ramkumar, K. Ravikumar, S. Varshini, Fractional neutral stochastic differential equations with Caputo-fractional derivative: fractional Brownian motion, Poisson jumps and optimal control, Stoch. Anal. Appl., 39 (2021), 157–176. https://doi.org/10.1080/07362994.2020.1789476 doi: 10.1080/07362994.2020.1789476
    [14] S. A. Jose, W. Yukunthorn, J. E. Naploes Valdes, H. Leiva, Some existence, uniqueness and stability results of nonlocal random impulsive integro-differential equations, Applied Mathematics E-Notes, 20 (2020), 481–492.
    [15] H. Chen, The asymptotic behaviour for second-order neutral stochastic partial differential equations with infinite delay, Discrete Dyn. Nat. Soc., 2011 (2011), 584510. https://doi.org/10.1155/2011/584510 doi: 10.1155/2011/584510
    [16] S. J. Wu, X. Z. Meng, Boundedness of nonlinear differential systems with impulsive effects on random moments, Acta Math. Appl. Sin. Eng. Ser., 20 (2004), 147–154. https://doi.org/10.1007/s10255-004-0157-z doi: 10.1007/s10255-004-0157-z
    [17] T. Wang, Random impulsive model for stock prices and its application for insurers, (Chinese), Master thesis of East China Normal University, Shanghai, 2008.
    [18] S. Wu, B. Zhou, Existence and uniqueness of stochastic differential equations with random impulses and Markovian switching under non-lipschitz conditions, Acta. Math. Sin. Eng. Ser., 27 (2011), 519–536. https://doi.org/10.1007/s10114-011-9753-z doi: 10.1007/s10114-011-9753-z
    [19] Y. Zhou, S. Wu, Existence and uniqueness of solutions to stochastic differential equations with random impulses under Lipschitz conditions, Chinese Journal of Applied Probability Statistics, 26 (2010), 347–356.
    [20] Q. Yang, D. Wu, X. Shu, Existence and stability results of mild soltuions for random impulsive stochastic partial differential equations with noncompact semigroups, Stochastics, in press. https://doi.org/10.1080/17442508.2022.2056415
    [21] S. Li, L. Shu, X. B. Shu, F. Xu, Existence and Hyers-Ulam stability of random impulsive stochastic functional differential equations with finite delays, Stochastics, 91 (2019), 857–872. https://doi.org/10.1080/17442508.2018.1551400 doi: 10.1080/17442508.2018.1551400
    [22] A. Anguraj, K. Ravikumar, J. J. Neito, On stability of stochastic differential equations with random impulses driven by Poisson jumps, Stochastics, 93 (2021), 682–696. https://doi.org/10.1080/17442508.2020.1783264 doi: 10.1080/17442508.2020.1783264
    [23] D. J. Guo, Multiple positive solutions for first order nonlinear integro-differential equations in Banach spaces, Nonlinear Anal. Theor., 53 (2003), 183–195. https://doi.org/10.1016/S0362-546X(02)00165-7 doi: 10.1016/S0362-546X(02)00165-7
    [24] D. J. Guo, X. Z. Liu, External solutions of nonlinear impulsive integro-differential equations in Banach spaces, J. Math. Anal. Appl., 177 (1993), 538–552. https://doi.org/10.1006/jmaa.1993.1276 doi: 10.1006/jmaa.1993.1276
    [25] H. Chen, Impulsive-integral inequality and exponential stability for stochastic partial differential equations with delays, Stat. Probabil. Lett., 80 (2010), 50–56. https://doi.org/10.1016/j.spl.2009.09.011 doi: 10.1016/j.spl.2009.09.011
    [26] D. Gao, J. Li, Existence and mean-square exponential stability of mild solutions for impulsive stochastic partial differential equations with noncompact semigroup, J. Math. Anal. Appl., 484 (2020), 123717. https://doi.org/10.1016/j.jmaa.2019.123717 doi: 10.1016/j.jmaa.2019.123717
    [27] A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York, NY: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1
    [28] R. C. Grimmer, Resolvent operators for integral equations in a Banach space, Trans. Amer. Math. Soc., 273 (1982), 333–349. https://doi.org/10.1090/S0002-9947-1982-0664046-4 doi: 10.1090/S0002-9947-1982-0664046-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1464) PDF downloads(155) Cited by(3)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog