This work deals with the existence and continuous dependence of an integral solution for neutral integro-differential equations with a nonlocal condition. This result is established by using an integrated resolvent operator under conditions of Lipschitz continuity and uniqueness via the Banach fixed point technique. We also study the existence of a strict solution on reflexive and general Banach spaces. In the last section, an example is provided related to this theory.
Citation: Kottakkaran Sooppy Nisar, Kasilingam Munusamy, Chokkalingam Ravichandran, Sriramulu Sabarinathan. Interpretation on nonlocal neutral functional differential equations with delay[J]. AIMS Mathematics, 2023, 8(11): 25611-25632. doi: 10.3934/math.20231307
This work deals with the existence and continuous dependence of an integral solution for neutral integro-differential equations with a nonlocal condition. This result is established by using an integrated resolvent operator under conditions of Lipschitz continuity and uniqueness via the Banach fixed point technique. We also study the existence of a strict solution on reflexive and general Banach spaces. In the last section, an example is provided related to this theory.
[1] | S. Belmor, C. Ravichandran, F. Jarad, Nonlinear generalized fractional differential equations with generalized fractional integral conditions, J. Taibah Univ. Sci., 14 (2020), 114–123. https://doi.org/10.1080/16583655.2019.1709265 doi: 10.1080/16583655.2019.1709265 |
[2] | P. Cannarsa, D. Sforza, Global solutions of abstract semilinear parabolic equations with memory terms, Nonlinear Differ. Equ. Appl., 10 (2003), 399–430. https://doi.org/10.1007/s00030-003-1004-2 doi: 10.1007/s00030-003-1004-2 |
[3] | N. Cao, X. Fu, Existence results of solutions for a neutral evolution equation with nonlocal conditions on infinite interval, J. Math. Anal. Appl., 510 (2022), 126008. https://doi.org/10.1016/j.jmaa.2022.126008 doi: 10.1016/j.jmaa.2022.126008 |
[4] | J. P. Dauer, K. Balachandran, Existence of solutions of nonlinear neutral integrodifferential equations in Banach space, J. Math. Anal. Appl., 251 (2000), 93–105. https://doi.org/10.1006/jmaa.2000.7022 doi: 10.1006/jmaa.2000.7022 |
[5] | W. Desch, R. Grimmer, W. Schappacher, Some considerations for linear integrodifferential equations, J. Math. Anal. Appl., 104 (1984), 219–234. https://doi.org/10.1016/0022-247X(84)90044-1 doi: 10.1016/0022-247X(84)90044-1 |
[6] | A. Diop, M. Dieye, M. A. Diop, K. Ezzinbi, Integrodifferential equations of volterra type with nonlocal and impulsive conditions, J. Integral Equ. Appl., 34 (2022), 19–37. https://doi.org/10.1216/jie.2022.34.19 doi: 10.1216/jie.2022.34.19 |
[7] | K. Ezzinbi, H. Toure, I. Zabsonre, Existence and regularity of solutions for some partial functional integrodifferential equations in Banach spaces, Nonlinear Anal.: Theory Methods Appl., 70 (2009), 2761–2771. https://doi.org/10.1016/j.na.2008.04.001 doi: 10.1016/j.na.2008.04.001 |
[8] | K. Ezzinbi, S. Ghnimi, Existence and regularity of solutions for neutral partial functional integrodifferential equations, Nonlinear Anal.: Real World Appl., 11 (2010), 2335–2344. https://doi.org/10.1016/j.nonrwa.2009.07.007 doi: 10.1016/j.nonrwa.2009.07.007 |
[9] | K. Ezzinbi, S. Ghnimi, M. A. Taoudi, Existence results for some partial integrodifferential equations with nonlocal conditions, Glas. Mat., 51 (2016), 413–430. https://doi.org/10.3336/GM.51.2.09 doi: 10.3336/GM.51.2.09 |
[10] | K. Ezzinbi, M. Ziat, Nonlocal integrodifferential equations without the assumption of equicontinuity on the resolvent operator in Banach spaces, Differ. Equ. Dyn. Syst., 30 (2022), 315–333. https://doi.org/10.1007/s12591-018-0423-9 doi: 10.1007/s12591-018-0423-9 |
[11] | K. Ezzinbi, S. Ghnimi, Solvability of nondensely defined partial functional integrodifferential equations using the integrated resolvent operators, Electron. J. Qual. Theo. Differ. Equ., 88 (2019), 1–21. https://doi.org/10.14232/ejqtde.2019.1.88 doi: 10.14232/ejqtde.2019.1.88 |
[12] | R. Ferdausi, A. Hossain, M. Hasan, A. Islam, Existence and uniqueness of solutions to system of linear equations and integral equations using Banach fixed point theorem, Int. J. Adv. Res., 6 (2018), 494–500. |
[13] | E. Hernandez, V. Rolnik, T. M. Ferrari, Existence and uniqueness of solutions for abstract integro-differential equations with state-dependent delay and applications, Mediterr. J. Math., 19 (2022), 101. https://doi.org/10.1007/s00009-022-02009-2 doi: 10.1007/s00009-022-02009-2 |
[14] | E. Hernández, Existence and uniqueness of global solution for abstract second order differential equations with state-dependent delay, Math. Nachr., 295 (2022), 124–139. https://doi.org/10.1002/mana.201900463 doi: 10.1002/mana.201900463 |
[15] | K. Jothimani, K. Kaliraj, S. K. Panda, K. S. Nisar, C. Ravichandran, Results on controllability of non-densely characterized neutral fractional delay differential system, Evol. Equ. Control The., 10 (2021), 619–631. https://doi.org/10.3934/eect.2020083 doi: 10.3934/eect.2020083 |
[16] | H. Kellerman, M. Hieber, Integrated semigroups, J. Funct. Anal., 84 (1989), 160–180. https://doi.org/10.1016/0022-1236(89)90116-X doi: 10.1016/0022-1236(89)90116-X |
[17] | S. Koumla, K. Ezzinbi, R. Bahloul, Mild solutions for some partial functional integrodifferential equations with finite delay in Frechet spaces, SeMA J., 74 (2017), 489–501. https://doi.org/10.1007/s40324-016-0096-7 doi: 10.1007/s40324-016-0096-7 |
[18] | K. S. Nisar, K. Munusamy, C. Ravichandran, Results on existence of solutions in nonlocal partial functional integrodifferential equations with finite delay in nondense domain, Alex. Eng. J., 73 (2023), 377–384. https://doi.org/10.1016/j.aej.2023.04.050 doi: 10.1016/j.aej.2023.04.050 |
[19] | A. Lunardi, On the linear heat equation with fading memory, SIAM J. Math. Anal., 21 (1990), 1213–1224. https://doi.org/10.1137/0521066 doi: 10.1137/0521066 |
[20] | K. Manoj, K. Kumar, R. Kumar, Existence of mild solution for neutral functional mixed integrodifferential evolution equations with nonlocal conditions, J. Abstr. Comput. Math., 6 (2021), 32–40. |
[21] | A. Morsy, K. S. Nisar, C. Ravichandran, C. Anusha, Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces, AIMS Math., 8 (2023), 5934–5949. https://doi.org/10.3934/math.2023299 doi: 10.3934/math.2023299 |
[22] | K. Munusamy, C. Ravichandran, K. S. Nisar, B. Ghanbari, Existence of solutions for some functional integrodifferential equations with nonlocal conditions, Math. Methods Appl. Sci., 43 (2020), 10319–10331. https://doi.org/10.1002/mma.6698 doi: 10.1002/mma.6698 |
[23] | K. Munusamy, C. Ravichandran, K. S. Nisar, R. Jagatheeshwari, N. Valliammal, Results on neutral integrodifferential system using Krasnoselskii-Schaefer theorem with initial conditions, AIP Conf. Proc., 2718 (2023), 040001. https://doi.org/10.1063/5.0137023 doi: 10.1063/5.0137023 |
[24] | R. Murugesu, S. Suguna, Existence of solutions for neutral functional integrodifferential equations, Tamkang J. Math., 41 (2010), 117–128. https://doi.org/10.5556/j.tkjm.41.2010.663 doi: 10.5556/j.tkjm.41.2010.663 |
[25] | H. Oka, Integrated resolvent operators, J. Integral Equ. Appl., 7 (1995), 193–232. |
[26] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer, 1983. https://doi.org/10.1007/978-1-4612-5561-1 |
[27] | C. Ravichandran, K. Munusamy, K. S. Nisar, N. Valliammal, Results on neutral partial integrodifferential equations using Monch-Krasnosel'Skii fixed point theorem with nonlocal conditions, Fractal Fract., 6 (2022), 75. https://doi.org/10.3390/fractalfract6020075 doi: 10.3390/fractalfract6020075 |
[28] | V. Vijayaraj, C. Ravichandran, T. Botmart, K. S. Nisar, K. Jothimani, Existence and data dependence results for neutral fractional order integro-differential equations, AIMS Math., 8 (2023), 1055–1071. https://doi.org/10.3934/math.2023052 doi: 10.3934/math.2023052 |
[29] | J. Zhu, X. Fu, Existence and differentiablity of solutions for nondensely defined neutral integro-differential evolution equations, Bull. Malays. Math. Sci. Soc., 46 (2023), 30. https://doi.org/10.1007/s40840-022-01428-4 doi: 10.1007/s40840-022-01428-4 |