The purpose of this paper is first to introduce the notation of matrix intuitionistic fuzzy normed spaces, and then by virtue of this notation to study the Hyers-Ulam stability results concerning the mixed type additive-quadratic functional equation
$ 2k[f(x+ky)+f(kx+y)] = k(1-s+k+ks+2k^{2})f(x+y)\\+k(1-s-3k+ks+2k^{2})f(x-y) \\ +2kf(kx)+2k(s+k-ks-2k^{2})f(x)+2(1-k-s)f(ky)+2ksf(y)$
in the setting of matrix intuitionistic fuzzy normed spaces by applying two different methods, where $ s $ is a parameter, $ k > 1 $ and $ s\neq 1-2k $. Moreover, the interdisciplinary relation between the theory of matrix intuitionistic fuzzy normed spaces and the theory of functional equations are also presented in this paper.
Citation: Zhihua Wang. Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces[J]. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297
The purpose of this paper is first to introduce the notation of matrix intuitionistic fuzzy normed spaces, and then by virtue of this notation to study the Hyers-Ulam stability results concerning the mixed type additive-quadratic functional equation
$ 2k[f(x+ky)+f(kx+y)] = k(1-s+k+ks+2k^{2})f(x+y)\\+k(1-s-3k+ks+2k^{2})f(x-y) \\ +2kf(kx)+2k(s+k-ks-2k^{2})f(x)+2(1-k-s)f(ky)+2ksf(y)$
in the setting of matrix intuitionistic fuzzy normed spaces by applying two different methods, where $ s $ is a parameter, $ k > 1 $ and $ s\neq 1-2k $. Moreover, the interdisciplinary relation between the theory of matrix intuitionistic fuzzy normed spaces and the theory of functional equations are also presented in this paper.
[1] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064 |
[2] | J. Brzdȩk, D. Popa, I. Rasa, B. Xu, Ulam stability of operators, Academic Press, 2018. |
[3] | L. Cadariu, V. Radu, On the stability of the Cauchy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004), 43–52. |
[4] | J. B. Diaz, B. Margolis, A fixed point theorem of the alternative, for contractions on a generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968), 305–309. https://doi.org/10.1090/S0002-9904-1968-11933-0 doi: 10.1090/S0002-9904-1968-11933-0 |
[5] | A. Ebadian, S. Zolfaghan, S. Ostadbash, C. Park, Approximation on the reciprocal functional equation in several variables in matrix non-Archimedean random normed spaces, Adv. Differ. Equations, 2015 (2015), 314. https://doi.org/10.1186/s13662-015-0656-7 doi: 10.1186/s13662-015-0656-7 |
[6] | P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211 |
[7] | D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. USA, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[8] | D. H. Hyers, G. Isac, T. M. Rassias, Stability of functional equations in several variables, Springer Science Business Media, 1998. |
[9] | S. M. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Science Business Media, 2011. |
[10] | P. Kannappan, Functional equations and inequalities with applications, Springer Science Business Media, 2009. |
[11] | J. R. Lee, C. Park, D. Y. Shin, An AQCQ-functional equation in matrix normed spaces, Results Math., 64 (2013), 305–318. https://doi.org/10.1007/s00025-013-0315-9 doi: 10.1007/s00025-013-0315-9 |
[12] | J. R. Lee, D. Y. Shin, C. Park, Hyers-Ulam stability of functional equations in matrix normed spaces, J. Inequal. Appl., 2013 (2013), 22. https://doi.org/10.1186/1029-242X-2013-22 doi: 10.1186/1029-242X-2013-22 |
[13] | D. Miheţ, V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl., 343 (2008), 567–572. https://doi.org/10.1016/j.jmaa.2008.01.100 doi: 10.1016/j.jmaa.2008.01.100 |
[14] | M. Mursaleen, S. A. Mohiuddine, On stability of a cubic functional equation in intuitionistic fuzzy normed spaces, Chaos Solitons Fract., 42 (2009), 2997–3005. https://doi.org/10.1016/j.chaos.2009.04.041 doi: 10.1016/j.chaos.2009.04.041 |
[15] | C. Park, J. R. Lee, D. Y. Shin, An AQCQ-functional equation in matrix Banach spaces, Adv. Differ. Equations, 2013 (2013), 146. https://doi.org/10.1186/1687-1847-2013-146 doi: 10.1186/1687-1847-2013-146 |
[16] | C. Park, J. R. Lee, D. Y. Shin, Functional equations and inequalities in matrix paranormed spaces, J. Inequal. Appl., 2013 (2013), 547. https://doi.org/10.1186/1029-242X-2013-547 doi: 10.1186/1029-242X-2013-547 |
[17] | C. Park, D. Y. Shin, J. R Lee, Fuzzy stability of functional inequalities in matrix fuzzy normed spaces, J. Inequal. Appl., 2013 (2013), 224. https://doi.org/10.1186/1029-242X-2013-224 doi: 10.1186/1029-242X-2013-224 |
[18] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1 |
[19] | T. M. Rassias, Functional equations, inequalities and applications, Kluwer Academic Publishers, 2003. |
[20] | P. K. Sahoo, P. Kannappan, Introduction to functional equations, CRC Press, 2011. |
[21] | R. Saadati, J. H. Park, On the intuitionistic fuzzy topological spaces, Chaos Solitons Fract., 27 (2006), 331–344. https://doi.org/10.1016/j.chaos.2005.03.019 doi: 10.1016/j.chaos.2005.03.019 |
[22] | B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 313–334. https://doi.org/10.2140/pjm.1960.10.313 |
[23] | A. Song, The Ulam stability of matrix intuitionistic fuzzy normed spaces, J. Intell. Fuzzy Syst., 32 (2017), 629–641. https://doi.org/10.3233/JIFS-152540 doi: 10.3233/JIFS-152540 |
[24] | S. M. Ulam, Problems in modern mathematics, John Wiley & Sons, Inc., 1964. |
[25] | C. Wang, T. Xu, Solution and Hyers-Ulam-Rassias of a mixed type quadratic-additive functional equation with a parameter in quasi-Banach spaces, Atca Math. Sci., 37 (2017), 846–859. |
[26] | Z. Wang, P. K. Sahoo, Stability of an ACQ-functional equation in various matrix normed spaces, J. Nonlinear Sci. Appl., 8 (2015), 64–85. https://doi.org/10.22436/jnsa.008.01.08 doi: 10.22436/jnsa.008.01.08 |