Research article

Dynamic behavior of a stochastic SIR model with nonlinear incidence and recovery rates

  • Received: 29 June 2023 Revised: 15 August 2023 Accepted: 17 August 2023 Published: 28 August 2023
  • MSC : 37H05, 37H30, 60H10, 62M15

  • The spread of infectious diseases are inevitably affected by natural and social factors, and their evolution presents oscillations and other uncertainties. Therefore, it is of practical significance to consider stochastic noise interference in the studies of infectious disease models. In this paper, a stochastic SIR model with nonlinear incidence and recovery rate is studied. First, a unique global positive solution for any initial value of the system is proved. Second, we provide the sufficient conditions for disease extinction or persistence, and the influence of threshold $ \tilde{R_{0}} $ of the stochastic SIR model on disease state transition is analyzed. Additionally, we prove that the system has a stationary distribution under some given parameter conditions by building an appropriate stochastic Lyapunov function as well as using the equivalent condition of the Hasminskii theorem. Finally, the correctness of these theoretical results are validated by numerical simulations.

    Citation: Xiangming Zhao, Jianping Shi. Dynamic behavior of a stochastic SIR model with nonlinear incidence and recovery rates[J]. AIMS Mathematics, 2023, 8(10): 25037-25059. doi: 10.3934/math.20231278

    Related Papers:

  • The spread of infectious diseases are inevitably affected by natural and social factors, and their evolution presents oscillations and other uncertainties. Therefore, it is of practical significance to consider stochastic noise interference in the studies of infectious disease models. In this paper, a stochastic SIR model with nonlinear incidence and recovery rate is studied. First, a unique global positive solution for any initial value of the system is proved. Second, we provide the sufficient conditions for disease extinction or persistence, and the influence of threshold $ \tilde{R_{0}} $ of the stochastic SIR model on disease state transition is analyzed. Additionally, we prove that the system has a stationary distribution under some given parameter conditions by building an appropriate stochastic Lyapunov function as well as using the equivalent condition of the Hasminskii theorem. Finally, the correctness of these theoretical results are validated by numerical simulations.



    加载中


    [1] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [2] G. Zaman, Y. H. Kang, I. H. Jung, Stability analysis and optimal vaccination of an SIR epidemic model, Biosystems, 93 (2008), 240–249. https://doi.org/10.1016/j.biosystems.2008.05.004 doi: 10.1016/j.biosystems.2008.05.004
    [3] D. Jiang, J. Yu, C. Ji, N. Shi, Asymptotic behavior of global positive solution to a stochastic SIR model, Math. Comput. Modell., 54 (2011), 221–232. https://doi.org/10.1016/j.mcm.2011.02.004 doi: 10.1016/j.mcm.2011.02.004
    [4] C. Ji, D. Jiang, N. Shi, The behavior of an SIR epidemic model with stochastic perturbation, Stoch. Anal. Appl., 30 (2012), 755–773. https://doi.org/10.1080/07362994.2012.684319 doi: 10.1080/07362994.2012.684319
    [5] M. Fan, M. Y. Li, K. Wang, Global stability of an SEIS epidemic model with recruitment and a varying total population size, Math. Biosci., 170 (2001), 199–208. https://doi.org/10.1016/s0025-5564(00)00067-5 doi: 10.1016/s0025-5564(00)00067-5
    [6] A. Lahrouz, A. Settati, Necessary and sufficient condition for extinction and persistence of SIRS system with random perturbation, Appl. Math. Comput., 233 (2014), 10–19. https://doi.org/10.1016/j.amc.2014.01.158 doi: 10.1016/j.amc.2014.01.158
    [7] Y. Zhou, W. Zhang, S. Yuan, Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Model., 244 (2014), 118–131. https://doi.org/10.1016/j.amc.2014.06.100 doi: 10.1016/j.amc.2014.06.100
    [8] C. Ji, D. Jiang, Threshold behaviour of a stochastic SIR model, Appl. Math. Model., 38 (2014), 5067–5079. https://doi.org/10.1016/j.apm.2014.03.037 doi: 10.1016/j.apm.2014.03.037
    [9] R. M. Anderson, R. M. May, Infectious diseases of humans: dynamics and control, Oxford University Press, 1991.
    [10] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340. https://doi.org/10.2307/3866 doi: 10.2307/3866
    [11] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [12] G. H. Li, Y. X. Zhang, Dynamic behaviors of a modified SIR model in epidemic diseases using nonlinear incidence and recovery rates, Plos One, 12 (2017), e0175789. https://doi.org/10.1371/journal.pone.0175789 doi: 10.1371/journal.pone.0175789
    [13] F. S. Alshammari, M. A. Khan, Dynamic behaviors of a modified SIR model with nonlinear incidence and recovery rates, Alex. Eng. J., 60 (2021), 2997–3005. https://doi.org/10.1016/j.aej.2021.01.023 doi: 10.1016/j.aej.2021.01.023
    [14] C. Shan, H. Zhu, Bifurcations and complex dynamics of an SIR model with the impact of the number of hospital beds, J. Differ. Equations, 257 (2014), 1662–1688. https://doi.org/10.1016/j.jde.2014.05.030 doi: 10.1016/j.jde.2014.05.030
    [15] S. Spencer, Stochastic epidemic models for emerging diseases, University of Nottingham, 2008.
    [16] X. Mao, G. Marion, E. Renshaw, Environmental Brownian noise suppresses explosions in population dynamics, Stoch. Proc. Appl., 97 (2002), 95–110. https://doi.org/10.1016/S0304-4149(01)00126-0 doi: 10.1016/S0304-4149(01)00126-0
    [17] N. Dalal, D. Greenhalgh, X. Mao, A stochastic model of AIDS and condom use, J. Math. Anal. Appl., 325 (2007), 36–53. https://doi.org/10.1016/j.jmaa.2006.01.055 doi: 10.1016/j.jmaa.2006.01.055
    [18] Y. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. https://doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002
    [19] E. Beretta, V. Kolmanovskii, L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simul., 45 (1998), 269–277. https://doi.org/10.1016/s0378-4754(97)00106-7 doi: 10.1016/s0378-4754(97)00106-7
    [20] M. Liu, C. Bai, K. Wang, Asymptotic stability of a two-group stochastic SEIR model with infinite delays, Commun. Nonlinear. Sci. Numer. Simul., 19 (2014), 3444–3453. https://doi.org/10.1016/j.cnsns.2014.02.025 doi: 10.1016/j.cnsns.2014.02.025
    [21] X. Zhang, K. Wang, Stochastic SEIR model with jumps, Appl. Math. Comput., 239 (2014), 133–143. https://doi.org/10.1016/j.amc.2014.04.061 doi: 10.1016/j.amc.2014.04.061
    [22] Q. Liu, D. Jiang, N. Shi, T. Hayat, A. Alsaedi, Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence, Phys. A, 462 (2016), 870–882. https://doi.org/10.1016/j.physa.2016.06.095 doi: 10.1016/j.physa.2016.06.095
    [23] F. Li, S. Zhang, X. Meng, Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function, Comput. Appl. Math., 38 (2019), 95. https://doi.org/10.1007/s40314-019-0857-x doi: 10.1007/s40314-019-0857-x
    [24] F. Wei, L. Chen, Extinction and stationary distribution of an epidemic model with partial vaccination and nonlinear incidence rate, Phys. A, 545 (2020), 122852. https://doi.org/10.1016/j.physa.2019.122852 doi: 10.1016/j.physa.2019.122852
    [25] X. B. Zhang, R. J. Liu, The stationary distribution of a stochastic SIQS epidemic model with varying total population size, Appl. Math. Lett., 116 (2021), 106974. https://doi.org/10.1016/j.aml.2020.106974 doi: 10.1016/j.aml.2020.106974
    [26] X. B. Zhang, H. F. Huo, H. Xiang, X. Y. Meng, Dynamics of the deterministic and stochastic SIQS epidemic model with non-linear incidence, Appl. Math. Comput., 243 (2014), 546–558. https://doi.org/10.1016/j.amc.2014.05.136 doi: 10.1016/j.amc.2014.05.136
    [27] X. B. Zhang, H. F. Huo, H. Xiang, Q. H. Shi, D. G. Li, The threshold of a stochastic SIQS epidemic model, Phys. A, 482 (2017), 362–374. https://doi.org/10.1016/j.physa.2017.04.100 doi: 10.1016/j.physa.2017.04.100
    [28] Q. Liu, D. Jiang, N. Shi, T. Hayat, B. Ahmad, Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence, Phys. A, 476 (2017), 58–69. https://doi.org/10.1016/j.physa.2017.02.028 doi: 10.1016/j.physa.2017.02.028
    [29] L. Zhang, S. Liu, X. Zhang, Asymptotic behavior of a stochastic virus dynamics model with intracellular delay and humoral immunity, J. Appl. Anal. Comput., 9 (2019), 1425–1442. https://doi.org/10.11948/2156-907X.20180270 doi: 10.11948/2156-907X.20180270
    [30] Q. Liu, D. Jiang, N. Shi, T. Hayat, Dynamics of a stochastic delayed SIR epidemic model with vaccination and double diseases driven by Lévy jumps, Phys. A, 492 (2018), 2010–2018. https://doi.org/10.1016/j.physa.2017.11.116 doi: 10.1016/j.physa.2017.11.116
    [31] Y. Wang, T. Zhao, J. Liu, Viral dynamics of an HIV stochastic model with cell-to-cell infection, CTL immune response and distributed delays, Math. Biosci. Eng., 16 (2019), 7126–7154. https://doi.org/10.3934/mbe.2019358 doi: 10.3934/mbe.2019358
    [32] C. Chen, Y. Kang, The asymptotic behavior of a stochastic vaccination model with backward bifurcation, Appl. Math. Model., 40 (2016), 6051–6068. https://doi.org/10.1016/j.apm.2016.01.045 doi: 10.1016/j.apm.2016.01.045
    [33] S. Liu, L. Zhang, Y. Xing, Dynamics of a stochastic heroin epidemic model, J. Comput. Appl. Math., 351 (2019), 260–269. https://doi.org/10.1016/j.cam.2018.11.005 doi: 10.1016/j.cam.2018.11.005
    [34] S. Bekiros, D. Kouloumpou, SBDiEM: a new mathematical model of infectious disease dynamics, Chaos Solitons Fract., 136 (2020), 109828. https://doi.org/10.1016/j.chaos.2020.109828 doi: 10.1016/j.chaos.2020.109828
    [35] A. Tocino, A. M. Del Rey, Local stochastic stability of SIRS models without Lyapunov functions, Commun. Nonlinear Sci. Numer. Simul., 103 (2021), 105956. https://doi.org/10.1016/j.cnsns.2021.105956 doi: 10.1016/j.cnsns.2021.105956
    [36] X. Mao, Stochastic differential equations and applications, 2 Eds., Elsevier, 2008.
    [37] P. E. Kloeden, E. Platen, Higher-order implicit strong numerical schemes for stochastic differential equations, J. Stat. Phys., 66 (1992), 283–314. https://doi.org/10.1007/BF01060070 doi: 10.1007/BF01060070
    [38] A. Friedman, Stochastic differential equations and applications, Springer, 1975.
    [39] Y. Zhao, D. Jiang, The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34 (2014), 90–93. https://doi.org/10.1016/j.aml.2013.11.002 doi: 10.1016/j.aml.2013.11.002
    [40] R. Khasminskii, Stochastic stability of differential equations, Springer, 1980.
    [41] C. Zhu, G. Yin, Asymptotic properties of hybrid diffusion systems, SIAM J. Control Optim., 46 (2007), 1155–1179. https://doi.org/10.1137/060649343 doi: 10.1137/060649343
    [42] D. J. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Rev., 43 (2001), 525–546. https://doi.org/10.1137/S0036144500378302 doi: 10.1137/S0036144500378302
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1163) PDF downloads(92) Cited by(0)

Article outline

Figures and Tables

Figures(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog