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1. Introduction

The most crucial mathematical model in epidemiology and the prevention of disease is the SIR
warehouse model built by Kermack and Mckendrick [1] in 1927. They used the model to examine
the transmission laws of the outbreaks of plague in 1906 and the Black Death in 1665 to 1666. The
specific model is as follows: 

dS (t)
dt = −βS (t)I(t),

dI(t)
dt = βS (t)I(t) − γI(t),

dR(t)
dt = γI(t),

(1.1)
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where S (t), I(t) and R(t) refer to susceptible population, infected population and removed population at
time t respectively. β is the coefficient of infectivity and γ is the coefficient of removal rate. Since then,
the model had been studied in depth and generalized to various forms by many scientists (see [2–5]).

The incidence of a disease plays an important role in the study of the epidemic model. βS (t)I(t)
was widely used earlier as a standard incidence to describe the infectivity of the disease (see [6–8]).
However, when the population is large or subject to some random factors, the standard incidence rate
is not reasonable. A number of nonlinear incidence functions were proposed by many scholars. For
example, in 1978, Anderson and May introduced a saturated incidence rate function βS (t)I(t)

1+aI(t) , where a is
the saturation parameter, and 1

1+aI(t) describes the saturation caused by interventions when the number
of infected people increases [9]. Beddington [10] and DeAngelis et al. [11] independently introduced
nonlinear incidence βS (t)I(t)

1+a1S (t)+a2I(t) , a1 is the saturation coefficient of susceptible individuals, and a2 is
the saturation coefficient of infected individuals. Li and Zhang [12] modified this incidence rate to
βS (t)I(t)

1+a1S (t)+a2I2(t) . In [13], Alshammari and Khan extend the SIR model by introducing nonlinear recovery
rate and considering the nonlinear Monod equation for morbidity [14].

Given that reality is full of uncertainty and randomness, the spread of disease will inevitably be
affected by various forms of random factors. Spencer [15] points out that since human contact is
unpredictable, the growth and spread of infectious diseases are essentially random. Taking random
factors into account in epidemic models is conducive to understand the transmission laws of
infectious diseases more scientifically and deeply in the real world. There are three methods to
introduce stochastic factors into deterministic models in existing literatures: parameter
perturbation [16–18], equilibrium disturbance [19–21] and linear disturbance of the system [22–24].
Based on the three methods, a series of generalized epidemic models were studied, and many valuable
results were obtained. For example, in [25–27] the SIQS model with isolation and random
fluctuations was studied. Stochastic infectious disease models with a standard incidence rate was
described in [28, 29]. In [30, 31] the stochastic infectious disease model with delay was introduced.
Chen and Kang [32] considered a stochastic vaccination model with backward bifurcation and
investigated its asymptotic behavior. In [33], a stochastic heroin epidemic model was investigated
and the sufficient conditions for the extinction of the drug users and the existence of ergodic stationary
distribution to the model were established respectively. In recent years, the stochastic epidemic model
had some new studies. For example, in [34], Bekiros and Kouloumpou provided a new stochastic
epidemic model to describe the spread of COVID-19. In 2021, Tocino and Del Rey [35] given a new
method that how sufficient conditions for the local stochastic asymptotic stability of a nonlinear
system can be derived from the stability analysis of an ordinary linear system.

Inspired by the predecessors’ research, we generalized a class of SIR models with nonlinear
incidence and recovery rates (2.1) to a stochastic model (2.3) by referring to parametric perturbation
methods and analyzed its dynamic characteristics for exploring the influence of stochastic
disturbance.

The organization of this paper is as follows: In Section 2, a stochastic epidemic model with
nonlinear incidence and recovery rates is formulated. In Section 3, it is proved that system (2.3) has a
unique global positive solution. The sufficient conditions for disease extinction and persistence are
deduced in Section 4. In Section 5, we prove that the system (2.3) has an ergodic stationary
distribution under certain conditions. Corresponding numerical simulations are given to validate the
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theoretical results in Section 6. Finally, the paper ends with a brief conclusion.

2. Model formulation

According to the transmission mechanism of SIR infectious diseases, the total population N(t) at
t is divided into susceptible individuals S (t), infected individuals I(t) and recovered individuals R(t).
That is, N(t) = S (t) + I(t) + R(t).

Based on the above description, Fehaid Salem Alshammari et al. establish the following nonlinear
dynamical system composed of nonlinear differential equations in [13] as follows:

dS (t)
dt = Λ −

βI(t)S (t)
m+I(t) − µS (t),

dI(t)
dt =

βI(t)S (t)
m+I(t) −

(
α0 + (α1 − α0) b

b+I(t)

)
I(t) − (γ + µ)I(t),

dR(t)
dt =

(
α0 + (α1 − α0) b

b+I(t)

)
I(t) − µR(t),

N(t) = S (t) + I(t) + R(t),

(2.1)

where N(t) is a positive constant and the total population at time t, Λ represents the birth rate, m is the
intervention level, µ denotes the natural death rate at each compartment, γ is the disease death rate, β
is the disease transmission rate. α0 and α1 represent minimum and maximum recovery rates per capita,
respectively. Here, b is an indicator of the available resources of hospitals, i.e., the importance of the
number of beds in controlling the spread of infectious diseases. βI(t)S (t)

m+I(t) refers to transmission rate of
individuals moving from S (t) chamber to I(t) chamber. Once an individual is infected, the individual
either recovers at a recovery rate of (α0 + (α1 − α0) b

b+I(t) ) or dies at a rate of γ.

Since R(t) has no effect on the propagation of disease, only the following reduced system is
discussed in [13]. 

dS (t)
dt = Λ −

βI(t)S (t)
m+I(t) − µS (t),

dI(t)
dt =

βI(t)S (t)
m+I(t) −

(
α0 + (α1 − α0) b

b+I(t)

)
I(t) − (γ + µ)I(t).

(2.2)

The basic reputation number of the system (2.2) is R0 =
βΛ

mµ(α1+γ+µ)
[13]. According to [13], when

R0 ≤ 1, the system (2.2) has a globally asymptotically stable disease-free equilibrium point. When
R0 > 1, the system (2.2) has the only globally asymptotically stable endemic disease equilibrium
point.

Environmental fluctuations have a large impact on all aspects of real life. The influence of random
perturbations of white noise on the propagation rate is considered in this paper, that is, disease
transmission rate βdt is replaced with βdt + σB(t), where B(t) is standard Brownian movement which
is defined on the complete probability, and σ denotes the intensity of white noise. Then, the stochastic
model is as follows: dS (t) =

(
Λ −

βI(t)S (t)
m+I(t) − µS (t)

)
dt − σI(t)S (t)

m+I(t) dB(t),

dI(t) =
[
βI(t)S (t)
m+I(t) −

(
α0 + (α1 − α0) b

b+I(t)

)
I(t) − (γ + µ)I(t)

]
dt + σI(t)S (t)

m+I(t) dB(t).
(2.3)
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In this paper, we assume that model (2.3) will be in a complete probability space (Ω,F ,P) with
a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right continuous while F0

contains all P-null sets).

3. Existence and uniqueness of global positive solutions

In order to study the dynamic behavior of the system (2.3), it is necessary to analyze whether the
system has a global positive solution. Some preliminaries need to be introduced for preparation.

In general, we denote
Rn
+ := {x ∈ Rn : xi > 0}

for all i = 1, 2, · · · , n and consider an n-dimensional stochastic differential equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t)

with the initial value x(0) = x0 ∈ Rn, then the following conclusions are valid [36].
(I) For function V(x, t) ∈ C2,1(Rn × R+; R+), according to Itô′s formula,

dV(x(t), t) = LV(x(t), t)dt + Vx(x(t), t)g(x(t), t)dB(t), (3.1)

where L is an operator, and

LV(x, t) = Vt(x, t) + Vx(x, t) f (x, t) +
1
2

trace[gT (x, t)Vxx(x, t)g(x, t)], (3.2)

in which

Vt =
∂V
∂t
, Vx = (

∂V
∂x1
, · · · ,

∂V
∂xn

), Vxx = (
∂2V
∂xix j

)n×n.

(II)When f , g satisfy
(i) for any x, y ∈ Rn, t ∈ [t0,T ],H1 > 0,

| f (x, t) − f (y, t)|2 ∨ |g(x, t) − g(y, t)|2 ≤ H1 |x − y| , (3.3)

(ii) for any x, y ∈ Rn, t ∈ [t0,T ] ,H2 > 0,

| f (x, t)|2 ∨ |g(x, t)|2 ≤ H2(1 + |x|)2, (3.4)

then for any initial value x(0) = x0, there is a unique global solution to equation

dx(t) = f (x(t), t)dt + g(x(t), t)dB(t)

on the interval [0,+∞).
Next, we prove that the system (2.3) has a global positive solution by the following theorem.

Theorem 1. For any given initial value (S (0), I(0)) ∈ R2
+, the system (2.3) has a unique positive

solution (S (t), I(t)), and this solution stays in R2
+ with probability one. In other words (S (t), I(t)) ∈ R2

+

for all t ≥ 0 almost surely (a.s.).
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Proof. Since the coefficients of the system (2.3) satisfy the local Lipschitz condition, for any given
initial value (S (0), I(0)) ∈ R2

+ on t ∈ (0, τe), the system (2.3) has a unique local solution (S (t), I(t)),
where τe is the explosion time. To prove that the solution is global, we only need to prove that τe = ∞.
Let k0 > 0 is sufficient to make S (0), I(0) falling in the interval

[
1
k0
, k0

]
, and define the stopping time

for each integer k ≥ k0 as

τk = inf
{

t ∈ [0, τe) : S (t) <
(
1
k
, k

)
or I (t) <

(
1
k
, k

)}
. (3.5)

Obviously, τk is increasing when k → ∞. Set τ∞ = lim
k→∞
τk and τ∞ ≤ τe. If τ∞ = ∞ can be proved,

τe = ∞ a.s., the theorem should be proved. Next we need to prove τ∞ = ∞ a.s. Suppose this assertion
is incorrect, i.e., τ∞ , ∞, there is a pair of constants T > 0 and ϵ ∈ (0, 1) such that

P {τ∞ ≤ T } > ϵ. (3.6)

Therefore, there is an integer k1 ≥ k0 such that

P {τk ≤ T } > ϵ, ∀ k ≥ k1. (3.7)

Let N1(t) = S (t) + I(t), then

dN1(t)
dt

= Λ − µN1(t) −
(
α0 + (α1 − α0)

b
b + I(t)

)
I(t) − γI(t). (3.8)

Thus
N1(t) ≤ N1(0)e−µt +

Λ

µ
(1 − e−µt), (3.9)

that is, lim
t→∞

sup N1(t) ≤ Λ
µ
.

Define a binary Lyapunov function V: R2
+ → R+

V(S (t), I(t)) = (S (t) − 1 − ln S (t)) + (I(t) − 1 − ln I(t)). (3.10)

It’s non-negative because we can see from u ≥ 0, u − 1 − ln u ≥ 0. Using Itô′s formula to V , we can
calculate that

dV(S (t), I(t)) = LV(S (t), I(t))dt +
σ

m + I(t)
(I(t) − S (t))dB(t). (3.11)

According to the definition of the operator L, we can gain

LV(S (t), I(t)) =
(
1 −

1
S (t)

) (
Λ −
βI(t)S (t)
m + I(t)

− µS (t)
)

+

(
1 −

1
I(t)

) (
βI(t)S (t)

m(t) + I(t)
−

(
α0 + (α1 − α0)

b
b + I(t)

)
I(t) − (γ + µ)I(t)

)
+
σ2

2

(
I(t)

m + I(t)

)2

+
σ2

2

(
S (t)

m + I(t)

)2

≤ −µS (t) − (γ + µ + α0)I(t) + Λ + 2µ + γ + α1 + βN1(t) + (σN1(t))2.

(3.12)
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By using of inequality x − a − a ln x
a ≥ 0 for any positive constant a, we derive that

d(e−tV(S (t), I(t))) = e−t(−V(S (t), I(t)) + dV(S (t), I(t)))
≤ e−t [−S (t) + 1 + ln S (t) − I(t) + 1 + ln I(t) − µS (t) − (γ + µ + α0)I(t)

+Λ + 2µ + γ + α1 + βN1(t) + (σN1(t))2
]

dt +
σ

m + I(t)
(I(t) − S (t))dB(t)

= e−t

[
−(1 + µ)

(
S (t) −

1
1 + µ

ln S (t)
)
− (1 + γ + µ + α0) (I(t)

−
1

1 + γ + µ + α0
ln I(t)) + 2 + Λ + 2µ + γ + α1 + βN1(t) + (σN1(t))2

]
dt

+
σ

m + I(t)
(I(t) − S (t))dB(t)

≤ e−t

[
ln

1
1 + µ

+ ln
1

1 + γ + µ + α0
+ 2 + Λ + 2µ + γ + α1 + βN1(t)

+(σN1(t))2
]

dt +
σ

m + I(t)
(I(t) − S (t))dB(t)

= e−tKdt +
σ

m + I(t)
(I(t) − S (t))dB(t),

(3.13)

where

K =
∣∣∣∣∣ln 1

1 + µ

∣∣∣∣∣ + ∣∣∣∣∣ln 1
1 + γ + µ + α0

∣∣∣∣∣ + 2 + Λ + 2µ + γ + α1 + βN1(t) + (σN1(t))2.

We set
Ṽ(S (t), I(t)) = K + V(S (t), I(t)), (3.14)

and obtain that
dṼ(S (t), I(t)) ≤ Ṽ(S (t), I(t))dt −

σ

m + I(t)
(S (t) − I(t))dB(t). (3.15)

Integrate Eq (3.15) from 0 to t ∧ τk and take expectation

EṼ(S (t ∧ τk), I(t ∧ τk)) ≤ Ṽ(S (0), I(0)) +
∫ τ

0
EṼ(S (t ∧ τk), I(t ∧ τk))dr, (3.16)

the following inequality can be obtained by Gronwall inequality

EṼ(S (t ∧ τk), I(t ∧ τk)) ≤ Ṽ(S (0), I(0))eT . (3.17)

When k > k1, set Ωk = (τk ≤ T ), so P(Ωk) ≥ ϵ. For every ω ∈ Ωk, at least one of S (τk ∧ω), I(τk ∧ω) is
equal to k or 1

k , that is k − 1 − ln k or 1
k − 1 − ln 1

k = ( 1
k − 1 + ln k), so

Ṽ(S (τk ∧ ω), I(τk ∧ ω)) ≥ (k − 1 − ln k) ∧ (
1
k
− 1 + ln k). (3.18)

Consequently, we have

Ṽ(S (0), I(0))eT ≥ E(IΩkṼ(S (τk ∧ ω), I(τk ∧ ω)) ≥ ϵ(k − 1 − ln k) ∧ (
1
k
− 1 + ln k), (3.19)

where IΩk is Ωk indicator function. Letting k → ∞, one have

∞ > Ṽ(S (0), I(0))eT = ∞. (3.20)

This is a contradiction, therefore τ∞ = ∞. The theorem is proved. □
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4. Extinction and persistence of disease of system (2.3)

Before the main results of this section, we introduce the relevant stochastic theory knowledge used
in this section.
(I) Burkholder-Davis-Gundy inequality [36]. Assumption g ∈ ℓ2(R+,Rn×m). For t ≥ 0, define

x(t) =
∫ t

0
g(s)dB(s), A(t) =

∫ t

0
|g(s)|2 ds,

then for any p > 0, there are constants cp and Cp that are only dependent on p, such that

cpE |A(t)|
p
2 ≤ E( sup

0≤s≤t
|x(s)|p) ≤ CpE |A(t)|

p
2 , t ≥ 0.

(II) Doob’s martingale inequality theorem [36]. Let {Mt}t≥0 be the martingale on Rd and [a, b] be the
bounded interval on R+.

(i) If p ≥ 1, Mt ∈ Lp(Ω; Rd), for c > 0, then

P

{
ω : sup

a≤t≤b
|Mt(ω)| ≥ c

}
≤

E |Mb|
p

cp .

(ii) If p > 1, Mt ∈ Lp(Ω; Rd), then

E( sup
a≤t≤b
|Mt|

p) ≤ (
p

p − 1
)pE |Mb|

p .

(III) Borel-Cantelli theorem [37]. If Bk ∈ F (k = 1, 2, · · · ), and
∑∞

k=1P(Bk) < ∞, then

P(
∞⋂

i=1

∞⋃
k=i

Bk) = 0.

(IV) Strong number theorem [38]. If M = {Mt}t≥0 is real-valued continuous and there is a local
martingale with M(0) = 0, then it satisfies

lim
t→∞
⟨M,M⟩t = ∞ a.s.⇒ lim

t→∞

M
⟨M,M⟩t

= 0 a.s.,

and has
lim
t→∞

sup
⟨M,M⟩t

Mt
≤ ∞ a.s.⇒ lim

t→∞

Mt

t
= 0 a.s.

4.1. Disease extinction

Sufficient conditions for the almost inevitable extinction of disease of system (2.3) is deduced in
this subsection.

Lemma 1. Let (S (t), I(t)) be the solution of system (2.3), (S (0), I(0)) ∈ R2
+, then

lim
t→+∞

1
t

∫ t

0

σS (t)
m + I(t)

dB(t) = 0. (4.1)
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Proof. Set

F(t) =
∫ t

0

σS (t)
m + I(t)

dB(t)

for any θ > 2. According to Burkholder-Davis-Gundy inequality [36] and Theorem 1, we have

E
[

sup
0≤τ≤t
|F(τ)|θ

]
≤ CθE

[∫ t

0

σ2S 2(τ)
(m + I (τ))2 dτ

] θ
2

≤ Cθt
θ
2 E

[
sup
0≤τ≤t

σθS θ(τ)
(m + I(τ))θ

]
≤ ZθCθt

θ
2 , (4.2)

where Cθ is a constant related to θ, Zθ =
(
σΛ
µ

)θ
. For any 0 < ε < θ

2 − 1, by the Doob’s martingale
inequality [36], one have

P

{
ω : sup

dδ≤t≤(d+1)δ
|F(t)|θ > (dδ)1+ε+ θ2

}
≤

E(|F((d + 1)δ)|θ)

(dδ)1+ε+ θ2
≤

ZθCθ[(d + 1)δ]
θ
2

(dδ)1+ε+ θ2
≤

2
θ
2 ZθCθ

(dδ)1+ε , (4.3)

where δ is an arbitrary real number and d is a finite constant. For almost all ω ∈ Ω, the following
inequality holds for all but finitely many k by the Borel-Cantelli theorem [37]:

sup
dδ≤t≤(d+1)δ

|F(t)|θ ≤ (dδ)1+ε+ θ2 . (4.4)

Therefore, for almost all ω ∈ Ω, there is a positive number d0(ω), when d ≥ d0(ω) the above
inequality holds. Moreover, if d ≥ d0(ω) and dδ ≤ t ≤ (d + 1)δ hold, for almost all ω ∈ Ω, we have

ln |F(t)|θ

ln t
≤

(1 + ε + θ2 ) ln(dδ)
ln(dδ)

= 1 + ε +
θ

2
, (4.5)

so we have

lim
t→+∞

sup
ln |F(t)|

ln t
≤

1 + ε + θ2
θ

. (4.6)

Let ε→ 0, it can be obtained that

lim
t→+∞

sup
ln |F(t)|

ln t
≤

1
2
+

1
θ
. (4.7)

Then, for the above small positive ε(ε < 1
2 −

1
θ
), there exists a constant T (ω) and a set Ωε such that

P(Ωε) ≥ 1 − ε, t ≥ T (ω), ω ∈ Ωε,

ln ∥F(t)∥ ≤ (
1
2
+

1
θ
+ ε) ln t. (4.8)

Therefore

lim
t→+∞

sup
|F(t)|

t
≤ lim

t→∞

t
1
2+

1
θ+ε

t
= 0. (4.9)

Notice that
0 ≤ lim

t→+∞
inf
|F(t)|

t
,

then we have

lim
t→+∞

|F(t)|
t
= 0, a.s., lim

t→+∞

F(t)
t
= lim

t→+∞

1
t

∫ t

0

σS (t)
m + I(t)

dB(t) = 0, (4.10)

the proof completes. □
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Theorem 2. Let (S (t), I(t)) be the solution of the system (2.3) with any initial value (S (0), I(0)) ∈ R2
+.

(i) If σ2 > max
{
βmµ
Λ
, β2

2(µ+α1+γ)

}
, then lim

t→+∞
I(t) = 0 a.s.

(ii) If σ2 < βmµ
Λ

and R̃0 < 1 then lim
t→+∞

I(t) = 0 a.s., where

R̃0 = R0 −
σ2Λ2

2m2µ2(α1 + γ + µ)
,

and R0 is the basic regeneration number noted in Section 2.

Proof. Since (S (t), I(t)) is the solution of system (2.3) and satisfies the initial condition (S (0), I(0)) ∈
R2, we can obtain by applying Itô’s formula

d ln I(t) =
[
βS (t)

m + I(t)
−

(
α0 + (α1 − α0)

b
b + I(t)

)
− (γ + µ) −

σ2S 2(t)
2(m + I(t))2

]
dt +

σS (t)
m + I(t)

dB(t). (4.11)

Integrating both sides of Eq (4.11) from 0 to t, we get

ln I(t) =
∫ t

0

[
βS (u)

m + I(u)
− (α1 − α0)

b
b + I(u)

−
σ2S 2(u)

2(m + I(u))2

]
du

− (α0 + γ + µ)t + M(t) + ln I(0),
(4.12)

where M(t) =
∫ t

0
σS (u)
m+I(u)dB(u) is a locally continuous martingale and M(0) = 0. Let’s move on to the

following two cases:
(i) If σ2 > βmµ

Λ
, by Eq (4.12), we have

ln I(t) ≤
β2

2σ2 t − (µ + γ + α1)t + M(t) + ln I(0). (4.13)

Divide both sides of Eq (4.13) by t:

ln I(t)
t
≤
β2

2σ2 − (µ + γ + α1) +
M(t)

t
+

ln I(0)
t
. (4.14)

It can be seen from Lemma 1 that
lim
t→∞

M(t)
t
= 0. (4.15)

When σ2 > β2

2(µ+α1+γ)
, taking the limit of both sides of Eq (4.13), we get

lim
t→∞

sup
ln I(t)

t
≤ −

(
µ + γ + α1 −

β2

2σ2

)
< 0. (4.16)

So when σ2 > max
{
βmµ
Λ
, β2

2(µ+α1+γ)

}
, we have

lim
t→∞

I(t) = 0.

(ii) If σ2 < βmµ
Λ

is satisfied, note that

ln I(t) ≤
Λ

mµ

(
β −
σ2

2
(
Λ

mµ
)
)

t − (µ + α1 + γ)t + M(t) + ln I(0), (4.17)
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thus

ln I(t)
t
≤ (µ + α1 + γ)

[
βΛ

mµ(µ + α1 + γ)
−

σ2Λ2

2m2µ2(µ + α1 + γ)
− 1

]
+

M(t)
t
+

ln I(0)
t
. (4.18)

Take the limit of both sides of inequality (4.18)

lim
t→∞

sup
ln I(t)

t
≤ (µ + α1 + γ)(R̃0 − 1). (4.19)

Because of R̃0 < 1, we get

lim
t→∞

sup
ln I(t)

t
< 0, (4.20)

that is
lim
t→∞

I(t) = 0.

□

Theorem 2 shows that when σ2 > max
{
βmµ
Λ
, β2

2(µ+α1+γ)

}
, the infectious disease of model (2.3) must be

extinct, that is, the random disturbance with strong white noise is beneficial to control the infectious
disease.

4.2. Disease persistence in the mean

We focus on the behavior of diseases over time, and analyze the persistence of diseases in this
subsection. A necessary definition is given first.

Definition 1. ([39]) System (2.3) is considered to be the average value of persistence if
lim
t→∞

in f 1
t

∫ t

0
I(u)du > 0 a.s.

We have the following results:

Theorem 3. If

R̃0 =
βΛ

mµ(α1 + γ + µ)
−

σ2Λ2

2m2µ2(α1 + γ + µ)
= R0 −

σ2Λ2

2m2µ2(α1 + γ + µ)
> 1,

for any initial value (S (0), I(0)) ∈ R2
+, the solution (S (t), I(t)) of the system (2.3) has the following

properties:

lim
t→+∞

inf
1
t

∫ t

0
I(u)du ≥

mµ(R̃0 − 1)
β + µ

a.s.

Proof. Integrating system (2.3) yields

S (t) − S (0)
t

+
I(t) − I(0)

t
= Λ −

µ

t

∫ t

0
S (u)du −

α0 + γ + µ

t

∫ t

0
I(u)du

−
(α1 − α0)b

t

∫ t

0

I(u)
b + I(u)

du

≤ Λ −
µ

t

∫ t

0
S (u)du −

α0 + γ + µ

t

∫ t

0
I(u)du,

(4.21)
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so
1
t

∫ t

0
S (u)du ≤

Λ

µ
−
α0 + γ + µ

µt

∫ t

0
I(u)du + Φ(t), (4.22)

where

Φ(t) = −
1
µt

[S (t) − S (0) + I (t) − I(0)] .

By Itô′s formula, one can get that

d(ln(mI(t)) + I(t)) =
[
βS (t) − (m + I(t))

(
α0 + (α1 − α0)

b
b + I(t)

+ (γ + µ)
)

−
σ2S (t)2m

2(m + I(t))2

]
dt + σS (t)dB(t)

≥

[
βS (t) − (m + I(t))(α1 + γ + µ)−

σ2S (t)2

2m

]
dt + σS (t)dB(t).

(4.23)

Integrating this inequality from 0 to t and dividing by t on both sides, it leads to

m
ln I(t) − ln I(0)

t
+

I(t) − I(0)
t

≥
β

t

∫ t

0
S (u)du − m(α1 + γ + µ) −

σ2Λ2

2mµ2

−
(α1 + γ + µ)

t

∫ t

0
I(u)du +

σ

t

∫ t

0
S (u)dB(u)

≥
βΛ

µ
− m(α1 + γ + µ) −

σ2Λ2

2mµ2 −

[
β(α1 + γ + µ)

µ
+ (α1 + γ + µ)

]
1
t

∫ t

0
I(u)du

+ βΦ(t) +
Z(t)

t

= m(R̃0 − 1)(α1 + γ + µ) −
[
β(α1 + γ + µ)

µ
+ (α1 + γ + µ)

]
1
t

∫ t

0
I(u)du + βΦ(t) +

Z(t)
t
.

(4.24)

It can be obtained from the above inequality

1
t

∫ t

0
I(u)du ≥

1
W

[
m(R̃0 − 1)(α1 + γ + µ) + βΦ(t) +

Z(t)
t
−m

ln I(t) − ln I(0)
t

−
I(t) − I(0)

t

]
, (4.25)

where

W =
β(α1 + γ + µ)

µ
+ (α1 + γ + µ),

and

Z(t) = σ
∫ t

0
S (u)du

is a local continuous martingale and Z(0) = 0. Furthermore,

lim sup
t→+∞

⟨Z(t),Z(t)⟩
t

≤
σ2Λ2

µ2 < +∞
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a.s. It follows from the large number theorem for martingales (see [38]) that lim
t→+∞

Z(t)
t = 0 a.s. By

Theorem 1, one can obtain that−∞ < ln I(t) < ln Λ
µ

and lim
t→+∞
Φ (t) = 0 a.s. Taking the limit inferior on

both sides of (4.26) yields

lim inf
t→+∞

1
t

∫ t

0
I(u)du ≥

mµ(R̃0 − 1)
β + µ

a.s. (4.26)

This completes the proof of Theorem 3. □

5. Existence of the stationary distribution of the system (2.3)

We are interested in how long the disease persists in the population. In deterministic models, this
problem can be solved by proving the global asymptotical stability of the endemic equilibrium point
of the model. However, for the stochastic system (2.3), the above-mentioned method is not applicable.
In this section, the equivalent condition of the Hasminskii theorem [40] is used to obtain the traversal
smooth distribution of the system (2.3), which indicates that the disease will continue.

Let X(t) be the Markov process defined in the state space Rd
+, and satisfy

dX(t) = b(X(t))dt +
d∑

r=1

σr(X(t))dBr(t). (5.1)

The corresponding diffusion matrix is

A(X) = (ai j(x)), ai j(x) =
d∑

r=1

σi
r(x)σ j

r(x), (5.2)

where x ∈ D, D is a bounded open subset of Rd with a regular boundary, then it is necessary to
introduce the following lemma.

Lemma 2. [6] If the bounded region of the regular boundary D, D ⊂ Rd, and its closure D̄ ⊂ Rd,
satisfy the following conditions:

(i) For any x ∈ D, there are some i = 1, 2, 3 · · · , n and the positive constant q > 0, such that
aii(x) ≥ q.

(ii) For any x ∈ Rd \ D, there is a nonnegative C2-function V that makes LV negative. Then the
Markov processes X(t) has a unique ergodic stationary distribution. Let f (·) be integrable with respect
to the measure π, then there is

P

{
lim
T→∞

1
T

∫ T

0
f (X(t))dt =

∫
Rd

f (x)π(dx)
}
= 1

for all x ∈ Rd.

Remark 1. To verify condition (ii), it is sufficient to prove that there is a nonnegative C2-function and
a neighborhood U, so for some κ > 0, Lϕ(x) < −κ, where x ∈ Rd \ D (see [41]) and L represents the
difference operator defined in (3.2).
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It is easy to obtain that the deterministic systems (2.2) have two equilibrium points: a disease-free
equilibrium E0 = (Λ

µ
, 0) and a disease endemic equilibrium E1 = (S ∗, I∗). We prove the main result of

this section.

Theorem 4. Consider the stochastic systems (2.3) with initial conditions (S (0), I(0)) ∈ R2
+, and

suppose that R0 > 1, R̃0 > 1 and
0 < χ < min

{
h1S 2

∗, h2I2
∗

}
, (5.3)

where

χ =
σ2I∗(m + I∗)(2µ + γ + α0)

m2β
S 2
∗, h1 = µ −

σ2I∗(m + I∗)(2µ + γ + α0)
m2β

, h2 = α0 + γ + µ.

Then there is a stable distribution π, and the solution (S (t), I(t)) of system (2.3) is ergodic. In particular,
we get

lim
t→+∞

sup
1
t

E
∫ t

0
[h1(S (u) − S ∗) + h2(I(u) − I∗)]du ≤ χ. (5.4)

Proof. Since R0 > 1, the system (2.2) has a positive balance E∗ = (S ∗, I∗), and

Λ =
βI∗S ∗
m + I∗

+ µS ∗,
βI∗S ∗
m + I∗

=

[
α0 + γ + µ + (α1 − α0)

b
b + I∗

]
I∗. (5.5)

Define the following function

V(S (t), I(t)) = V1(S (t), I(t)) +
(2µ + γ + α0)(m + I∗)

β
V2(I(t)), (5.6)

where
V1(S (t), I(t)) =

1
2

(S (t) + I(t) − S ∗ − I∗)2, V2(I(t)) = I(t) − I∗ − I∗ ln
I(t)
I∗
. (5.7)

Using the Itô′s formula, yields

dV(S (t), I(t)) = dV1(S (t), I(t)) +
(2µ + γ + α0)(m + I∗)

β
dV2(I(t)), (5.8)

in detail
dV1(S (t), I(t)) = (S (t) + I(t) − S ∗ − I∗)(dS (t) + dI(t)) +

1
2

(dS (t) + dI(t))2

= LV1(S (t), I(t))dt,

dV2(I(t)) = (1 −
I∗

I(t)
)dI(t) +

I∗
2I2(t)

(dI(t))2

= LV2(I(t))dt + (I(t) − I∗)
σS (t)

m + I(t)
dB(t),

(5.9)

where
LV1(S (t), I(t)) = (S (t) + I(t) − S ∗ − I∗)[Λ − µS (t)

− (α0 + (α1 − α0)
b

b + I(t)
)I(t) − (γ + µ)I(t)],

(5.10)
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LV2(I(t)) = (I(t) − I∗)[
βS (t)

m + I(t)
− (α0 + (α1 − α0)

b
b + I(t)

)

− (γ + µ)] +
I∗
2
σ2S 2(t)

(m + I(t)2 .

(5.11)

Substitute Eq (5.5) into Eq (5.10)

LV1(S (t), I(t)) = (S (t) + I(t) − S ∗ − I∗)[−µ(S (t) − S ∗) + (α0 + (α1 − α0)
b

b + I∗
)I∗ + (r + µ)I∗

− (α0 + (α1 − α0)
b

b + I(t)
)I(t) − (γ + µ)I(t)]

≤ (S (t) + I(t) − S ∗ − I∗)[−µ(S (t) − S ∗) − (α0 + γ + µ)(I(t) − I∗)]
= −µ(S (t) − S ∗)2 − (α0 + γ + µ)(I(t) − I∗)2

− (2µ + α0 + γ)(S (t) − S ∗)(I(t) − I∗).

(5.12)

Using (5.5), we can get

LV2(I(t)) = (I(t) − I∗)
[
(
βS (t)

m + I(t)
−
βS ∗

m + I∗
)
]
+

I∗
2
σ2S 2(t)

(m + I(t))2

= (I(t) − I∗)
[
βS (t)(

1
m + I(t)

−
1

m + I∗
) +

β

m + I∗
(S (t) − S ∗)

]
+

I∗
2
σ2S 2(t)

(m + I(t))2 .

(5.13)

From m + I(t) ≥ m and using the inequality (a + b)2 ≤ 2a2 + 2b2 one can see that

LV2(I(t)) ≤
β

m + I∗
(S (t) − S ∗)(I(t) − I∗) +

σ2I∗
2m2 [(S (t) − S ∗) + S ∗]2

≤
σ2I∗
m2 (S (t) − S ∗)2 +

β

m + I∗
(S (t) − S ∗)(I(t) − I∗) +

σ2I∗
m2 S 2

∗.

(5.14)

Through (5.8), we can deduce

LV(S (t), I(t)) = LV1(S (t), I(t)) +
(2µ + γ + α0)(m + I∗)

β
LV2(I(t)). (5.15)

Substituting (5.12) and (5.14) into (5.15):

LV(S (t), I(t)) ≤ −
[
µ −
σ2I∗(m + I∗)(2µ + γ + α0)

m2β

]
(S (t) − S ∗)2 − (α0 + γ + µ)(I(t) − I∗)2

+
σ2I∗(m + I∗)(2µ + γ + α0)

m2β
S 2
∗

= −h1(S (t) − S ∗)2 − h2(I(t) − I∗)2 + χ,

(5.16)

where h1, h3 and χ are defined in theorem 4 respectively, we have

dV(S (t), I(t)) ≤ −h1(S (t) − S ∗)2 − h2(I(t) − I∗)2 + χ + (I(t) − I∗)
σS (t)

m + I(t)
dB(t). (5.17)
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Integrating the above equation from 0 to t, the following inequality can be obtained:

V(S (t), I(t)) − V(S (0), I(0)) ≤
∫ t

0
[−h1(S (u) − S ∗)2 − h2(I(u) − I∗)2]du + χt + M(t), (5.18)

where M(t) is a local martingale noted as

M(t) =
∫ t

0
(I(u) − I∗)

σS (u)
m + I(u)

dB(u).

Taking the expectation from both sides of Eq (5.18)

EV(S (t), I(t)) − EV(S (0), I(0)) ≤ E
∫ t

0
[−h1(S (u) − S ∗)2 − h2(I(u) − I∗)2]du + χt, (5.19)

we have

lim
t→∞

sup
1
t

E
∫ t

0
[h1(S (u) − S ∗)2 + h2(I(u) − I∗)2]du ≤ χ. (5.20)

That is to say, we get Eq (5.4).
Noting that if 0 < χ < min

{
h1S 2

∗, h2I2
∗

}
, then the ellipsoid

−h1(S (t) − S ∗)2 − h2(I(t) − I∗)2 + χ = 0 (5.21)

lies entirely in R2
+. We can take D as any neighborhood of the ellipsoid such that D̄ ⊂ R2

+, So for
(S (t), I(t)) ∈ R2

+ \D, LV(S (t), I(t)) < 0, which means that the second condition in Lemma 2 is satisfied.
On the other hand, we can write the system (2.3) as follows

d
(
S (t)
I(t)

)
=

 Λ −
βI(t)S (t)
m+I(t) − µS (t)

βI(t)S (t)
m+I(t) − (α0 + (α1 − α0) b

b+I(t) )I(t) − (γ + µ)I(t)

 dt +
−σβI(t)S (t)

m+I(t)
σβI(t)S (t)

m+I(t)

 dB(t). (5.22)

The diffusion matrix corresponding to system (2.3) is

A(S (t), I(t)) =
σ2I2(t)S 2(t)
(m + I(t))2

(
1 −1
−1 1

)
. (5.23)

Since D̄ ⊂ R2
+, then

a11(S (t), I(t)) = a22(S (t), I(t)) =
σ2S 2(t)I2(t)
(m + I(t))2 ≥ min

(S (t),I(t))∈D̄

σ2S 2(t)I2(t)
(m + I(t))2 = q. (5.24)

Therefore, we verify the condition of Lemma 2, and the proof of Theorem 4 has been completed. □

Remark 2. From Theorem 4, we have,

lim
σ2→∞

χ = 0, lim
σ2→∞

h1 = µ > 0, lim
σ2→∞

h2 = α0 + γ + µ > 0,

namely, the solution of system (2.3) fluctuates around the endemic equilibrium E∗(S ∗, I∗) of
deterministic system (2.2).
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6. Numerical simulation

In this section, numerical simulations are used to validate the theoretical results obtained in
Sections 4 and 5. To better understand the results, the parameters of models (2.2) and (2.3) are
referenced from [13].

First, we use the Milstein method mentioned in Higham [42] to validate the effect of white noise on
disease extinction and persistence. According to the Milstein method, model (2.3) can be rewritten as
the following discretization equation: S k+1 = S k +

(
Λ −

βIkS k
m+Ik
− µS k

)
dt − σIkS k

m+Ik
ξk
√
∆t + σ2IkS k

2(m+Ik)2 (ξ2
k − 1)∆t,

Ik+1 = Ik +
(
βIkS k
m+Ik
− (α0 + (α1 − α0) b

b+Ik
)Ik − (γ + µ)Ik

)
dt + σIkS k

m+Ik
ξk
√
∆t + σ2IkS k

2(m+Ik)2 (ξ2
k − 1)∆t,

(6.1)

where ∆t is time increment and ξk(k = 1, 2, · · · , n) is the Gaussian random variable which
follows N(0, 1).

According to [38], the parameters are chosen as

Λ = 0.6, β = 0.8, m = 2, µ = 0.3, α0 = 0.2, α1 = 0.21, b = 0.2, γ = 0.2,

an initial value is selected as (S (0), I(0)) = (0.8, 0.7) for simulation. It is easy to calculate that
model (2.2) has a unique stable disease equilibrium point E∗ = (1.8316, 0.0715). For comparison, the
evolutions of susceptible population and infected population of the deterministic model (2.2) are
shown in Figure 1(a). Obviously, the disease is persistent. However, when the model is exposed to
strong white noise interference, the disease would go extinct after a while (see Figure 1(b)).
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Figure 1. Time series diagram of S (t), I(t), (a) is the deterministic model and (b) is the
stochastic model with σ = 0.9, where the initial condition and parameter are S (0) =
0.8, I(0) = 0.7,Λ = 0.6, β = 0.8,m = 2, µ = 0.3, α0 = 0.2, α1 = 0.21, b = 0.2, γ = 0.2,R0 =

1.1268 > 1.

The effects of different intensities of white noise on model evolution are shown on Figures 2–4. It
can be calculated that

βmµ
λ
= 0.8,

β2

2(µ + α1 + γ)
= 0.4507.
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When σ = 0.95 or σ = 0.9, according to (i) of Theorem 2, the disease eliminates and the result is
shown in Figure 2.
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Figure 2. Comparison of I(t) time series between stochastic and deterministic systems under
different white noise intensities, (a): σ = 0.95 and (b): σ = 0.9, where the initial condition
and parameter are S (0) = 0.8, I(0) = 0.7,Λ = 0.6, β = 0.8,m = 2, µ = 0.3, α0 = 0.2, α1 =

0.21, b = 0.2, γ = 0.2,R0 = 1.1268 > 1.

When
σ = 0.7, R̃0 = 0.7817 < 1 or σ = 0.6, R̃0 = 0.8733 < 1, σ2 <

βmµ
λ
,

the disease still eliminates as time goes by. The numerical simulation shown in Figure 3 is consistent
with (ii) of Theorem 2. However, when the white noise σ decreases to 0.4 or 0.3, it can be seen that
disease will continue to exist (see Figure 4). In fact, in this case, R̃0 = 1.0141 > 1 or R̃0 = 1.0634 > 1.
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Figure 3. Comparison of I(t) time series between stochastic and deterministic systems under
different white noise intensities, (a): σ = 0.7, R̃0 = 0.7817 < 1 and (b): σ = 0.6, R̃0 =

0.8733 < 1, where the initial condition and parameter are S (0) = 0.8, I(0) = 0.7,Λ =
0.6, β = 0.8,m = 2, µ = 0.3, α0 = 0.2, α1 = 0.21, b = 0.2, γ = 0.2,R0 = 1.1268 > 1.

AIMS Mathematics Volume 8, Issue 10, 25037–25059.



25054

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

I(
t)

Deterministic
Stochastic

(a)

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

I(
t)

Deterministic
Stochastic

(b)

Figure 4. Comparison of I(t) time series between stochastic and deterministic systems under
different white noise intensities, (a): σ = 0.4, R̃0 = 1.0141 > 1 and (b): σ = 0.3, R̃0 =

1.0634 > 1, where the initial condition and parameter are S (0) = 0.8, I(0) = 0.7,Λ =
0.6, β = 0.8,m = 2, µ = 0.3, α0 = 0.2, α1 = 0.21, b = 0.2, γ = 0.2,R0 = 1.1268 > 1.

Next, we give the corresponding numerical simulation for the theoretical analysis of stationary
distribution. The histogram and probability density function diagram of S (t) and I(t) distributions of
system (2.3) are shown in Figures 5–7 corresponding to different intensities white noise. The selected
white noise intensity satisfies the condition of the Theorem 4. In order to better illustrate the results,
the longer evolution processes of infected population I(t) in deterministic and stochastic systems are
simulated.
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Figure 5. (a): Trajectory plot of I(t) of the stochastic model (2.3) and its corresponding
deterministic model (2.2). (b), (c): when σ = 0.2, R̃0 = 1.0986 > 1, the histogram and
probability density function plot of I(t) and S (t) of stochastic model (2.3) at t = 100.
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Figure 6. (a): Trajectory plot of I(t) of the stochastic model (2.3) and its corresponding
deterministic model (2.2). (b), (c): when σ = 0.3, R̃0 = 1.0634 > 1, the histogram and
probability density function plot of I(t) and S (t) of stochastic model (2.3) at t = 100.
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Figure 7. (a): Trajectory plot of I(t) of the stochastic model (2.3) and its corresponding
deterministic model (2.2). (b), (c): when σ = 0.4, R̃0 = 1.0141 > 1, the histogram and
probability density function plot of I(t) and S (t) of stochastic model (2.3) at t = 100.

It can be seen from Figures 5–7: when the noise intensity is high, the fluctuation amplitude of
I(t) is relatively large before the extinction, and the distribution of infected population and susceptible
population is a partial normal distribution (see (b), (c) of Figures 6 and 7). However, when the noise
intensity is low, the fluctuation amplitude of I(t) is relatively small, and the distributions of infected
population and susceptible population are close to normal distribution. Obviously, when R̃0 > 1, there
exists a unique stationary distribution in the system (2.3).
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7. Conclusions and discussion

A lot of studies have proved that introducing random interference into deterministic systems can
better reflect the evolution of the real world. In this paper, we study a stochastic SIR model (2.3)
with nonlinear incidence rate and recovery rate by replacing the disease transmission rate βdt with
βdt + σdB(t). First, we prove that the system (2.3) has a unique global positive solution. Then, a
sufficient condition based on the relationship of white noise and model parameters is deduced for the
extinction of diseases of system (2.3), and the condition of disease persistence is obtained in the sense
of the mean. Especially, a threshold value expression

R̃0 =
βΛ

mµ(α1 + γ + µ)
−

σ2Λ2

2m2µ2(α1 + γ + µ)
= R0 −

σ2Λ2

2m2µ2(α1 + γ + µ)

is found by transforming the stochastic model (2.3) into the stratonovich stochastic differential
equation model and calculating the basic regeneration number of the corresponding averaging system.
The threshold value obtained by the above-mentioned method is available for determining extinction
or persistent of the disease and is noted as a basic regeneration number of stochastic epidemic model
in some references. In fact, theoretical analysis shows that when R̃0 < 1, the disease becomes extinct
under a small disturbance. If the disturbance is large enough, the disease is likely to die out regardless
of R̃0. The results show that random noise has a great influence on the spread of infectious diseases.
Besides, under the restriction of some parameters conditions, if threshold of the stochastic
system (2.3) satisfies R̃0 > 1, the corresponding stochastic system (2.3) has a ergodic stationary
distribution. Furthermore, with the help of mathematical software, some necessary numerical
simulations verify the correctness of the theoretical analysis.

Based on theoretical analysis and numerical simulation, we find that the random noise has an
impact on the evolution of epidemic model (2.2). We consider that the contact rate is interfered by
environmental noise, i.e., βdt → βdt + σdB(t), and it is multiplicative noise. Itô′s formula is
recognized as an effective mathematical tool to deal with this kind of model. It is adopted in this
paper to obtain some valuable results of the stochastic SIR model (2.3). Due to the inclusion of
nonlinear incidence rates, nonlinear recovery rates and random disturbance terms with parameter
interference in the model, the theoretical analysis and proof process posed certain difficulties. We
have overcome these challenges and achieved favorable results. However, there are some other
dynamic properties of the proposed model that have not been completely solved and we will carry out
further research in our future work. Otherwise, there are many interfering factors that affect the
evolution of the infectious disease model. In future studies, adding random terms from different
perspectives to generalize the model and analyze its dynamic characteristics.
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