Research article

Dynamics of a nonlinear discrete predator-prey system with fear effect

  • Received: 18 May 2023 Revised: 16 July 2023 Accepted: 24 July 2023 Published: 07 August 2023
  • MSC : 37G15, 37N25, 39A28, 92D25, 93C10

  • In this paper, we investigate a nonlinear discrete prey-predator system with fear effects. The existence, local stability and boundedness of positive equilibrium point are discussed. Using the center manifold theorem and bifurcation theory, the conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation in the interior of $ \mathbb{R}_{+}^{2} $ are established. Furthermore, the numerical simulations not only show complex dynamical behaviors, but also verify our analysis results. A feedback control strategy is employed to control bifurcation and chaos in the system.

    Citation: Xiongxiong Du, Xiaoling Han, Ceyu Lei. Dynamics of a nonlinear discrete predator-prey system with fear effect[J]. AIMS Mathematics, 2023, 8(10): 23953-23973. doi: 10.3934/math.20231221

    Related Papers:

  • In this paper, we investigate a nonlinear discrete prey-predator system with fear effects. The existence, local stability and boundedness of positive equilibrium point are discussed. Using the center manifold theorem and bifurcation theory, the conditions for the existence of flip bifurcation and Neimark-Sacker bifurcation in the interior of $ \mathbb{R}_{+}^{2} $ are established. Furthermore, the numerical simulations not only show complex dynamical behaviors, but also verify our analysis results. A feedback control strategy is employed to control bifurcation and chaos in the system.



    加载中


    [1] A. A. Berryman, The origins and evolution of predator-prey theory, Ecology, 73 (1992), 1530–1535. http://dx.doi.org/10.2307/1940005 doi: 10.2307/1940005
    [2] H. Freedman, Deterministic Mathematical Models in Population Ecology, Edmonton: HIFR Consulting Ltd, 1980. http://dx.doi.org/10.2307/2975858
    [3] M. Sen, M. Banerjee, A. Morozov, Bifurcation analysis of a ratio-dependent prey-predator model with the Allee effect, Ecol. Compl., 11 (2012), 12–27. http://dx.doi.org/10.1016/j.ecocom.2012.01.002 doi: 10.1016/j.ecocom.2012.01.002
    [4] R. E. Kooij, A. Zegeling, A predator-prey model with Ivlev's functional response, J. Math. Anal. Appl., 198 (1996), 473–489. http://dx.doi.org/10.1016/j.chaos.2004.07.018 doi: 10.1016/j.chaos.2004.07.018
    [5] R. Lopez-Ruiz, R. Fournier-Prunaret, Indirect Allee effect, bistability and chaotic oscillations in a predator-prey discrete model of logistic type, Chaos Solitons Fract., 24 (2005), 85–101. http://dx.doi.org/10.1016/j.chaos.2004.07.018 doi: 10.1016/j.chaos.2004.07.018
    [6] J. D. Murray, Mathematical Biology, $2^{nd}$ edtion, Berlin: Springer-Verlag, 1993. http://dx.doi.org/10.1137/1032093
    [7] W. Ma, Y. Takeuchi, Stability analysis on a predator-prey system with distributed delays, J. Comput. Appl. Math., 88 (1998), 79–94. http://dx.doi.org/10.1016/S0377-0427(97)00203-3 doi: 10.1016/S0377-0427(97)00203-3
    [8] S. Sinha, O. Misra, J. Dhar, Modelling a predator-prey system with infected prey in polluted environment, Appl. Math. Model., 34 (2010), 1861–1872. http://dx.doi.org/10.1016/j.apm.2009.10.003 doi: 10.1016/j.apm.2009.10.003
    [9] M. Fan, K. Wang, Periodic solutions of a discrete time non-autonomous ratio-dependent predator-prey system, Math. Comput. Model., 35 (2002), 951–961. http://dx.doi.org/10.1016/s0895-7177(02)00062-6 doi: 10.1016/s0895-7177(02)00062-6
    [10] D. Summers, J. G. Cranford, B. P. Healey, Chaos in periodically forced discrete-time ecosystem models, Chaos Solitons Fract., 11 (2000), 2331–2342. http://dx.doi.org/10.1016/S0960-0779(99)00154-X doi: 10.1016/S0960-0779(99)00154-X
    [11] L. Yuan, Q. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system, Appl. Math. Model., 39 (2015), 2345–2362. http://dx.doi.org/10.1016/j.apm.2014.10.040 doi: 10.1016/j.apm.2014.10.040
    [12] G. Q. Sun, J. Zhang, L. P. Song, Z. Jin, B. L. Li, Pattern formation of a spatial predator-prey system, Appl. Math. Comput., 218 (2012), 11151–11162. http://dx.doi.org/10.1016/j.amc.2012.04.071 doi: 10.1016/j.amc.2012.04.071
    [13] B. Dubey, B. Das, J. Hussain, A predator-prey interaction model with self and cross-diffusion, Ecol. Model., 141 (2001), 67–76. http://dx.doi.org/10.1016/S0304-3800(01)00255-1 doi: 10.1016/S0304-3800(01)00255-1
    [14] G. Q. Sun, Z. Jin, L. Li, M. Haque, B. L. Li, Spatial patterns of a predator-prey model with cross diffusion, Nonlinear Dynam., 69 (2012), 1631–1638. http://dx.doi.org/10.1007/s11071-012-0374-6 doi: 10.1007/s11071-012-0374-6
    [15] C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, Florida: CRC Press, 1998.
    [16] K. L. Edelstein, Mathematical Model in Biology, New York: McGraw-Hill, 1988.
    [17] N. Hiroyuki, B. Yoshikazu, Introduction to Chaos, Physics and Mathematics of Chaotic Phenomena, Bristol: Institute of Physics Publishing, 1999. http://dx.doi.org/10.1201/9780429187001
    [18] H. F. Huo, W. T. Li, Existence and global stability of periodic solutions of a discrete predator-prey system with delays, Appl. Math. Comput., 153 (2004), 337–351. http://dx.doi.org/10.1016/S0096-3003(03)00635.0 doi: 10.1016/S0096-3003(03)00635.0
    [19] L. F. Cheng, H. G. Cao, Bifurcation analysis of a discrete-time ratio-dependent predator-prey model with Allee Effect, Commun. Nonlinear Sci. Numer. Simul., 38 (2016), 288–302. http://dx.doi.org/10.1016/j.cnsns.2016.02.038 doi: 10.1016/j.cnsns.2016.02.038
    [20] X. Yang, Uniform persistence and periodic solutions for a discrete predator-prey system with delays, Math. Anal. Appl., 316 (2006), 161–177. http://dx.doi.org/10.1016/j.jmaa.2005.04.036 doi: 10.1016/j.jmaa.2005.04.036
    [21] X. Wang, L. Zanette, X. Zou, Modelling the fear effect in predator-prey interactions, Math. Biol., 73 (2016), 1179–1204. http://dx.doi.org/10.1007/s00285-016-0989-1 doi: 10.1007/s00285-016-0989-1
    [22] M. X. Chen, R. C. Wu, Steady state bifurcation in Previte-Hoffman model, Int. J. Bifur. Chaos, 33 (2023), 2350020. http://dx.doi.org/10.1142/S0218127423500207 doi: 10.1142/S0218127423500207
    [23] S. Gakkhar, A. Singh, Complex dynamics in a prey-predator system with multiple delays, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 914–929. http://dx.doi.org/10.1016/j.cnsns.2011.05.047 doi: 10.1016/j.cnsns.2011.05.047
    [24] M. X. Chen, R. C. Wu, X. H. Wang, Non-constant steady states and Hopf bifurcation of a species interaction model, Commun. Nonlinear Sci. Numer. Simul., 116 (2023), 106846. http://dx.doi.org/10.1016/j.cnsns.2022.106846 doi: 10.1016/j.cnsns.2022.106846
    [25] X. L. Han, C. Y. Lei, Bifurcation and turing instability analysis for a space-and time-discrete predator-prey system with Smith growth function, Chaos Solitons Fract., 166 (2023), 112920. http://dx.doi.org/10.1016/j.chaos.2022.112910 doi: 10.1016/j.chaos.2022.112910
    [26] S. Lynch, Dynamical Systems with Applications Using Mathematica, Boston: Birkhauser, 2007. http://dx.doi.org/10.1007/978-0-8176-4586-1
    [27] S. Elaydi, An Introduction to Difference Equations, $3^{rd}$ edition, New York: Springer-Verlag, 2005. http://dx.doi.org/10.1007/0-387-27602-5
    [28] G. Chen, X. Dong, From Chaos to Order: Perspectives, Methodologies, and Applications, Singapore: World Scientific, 1998. http://dx.doi.org/10.1142/3033
    [29] C. Y. Lei, X. L. Han, W. Wang, Bifurcation analysis and chaos control of a discrete-time prey-predator model with fear factor, Math. Biosci. Eng., 19 (2022), 6659–6679. http://dx.doi.org/10.3934/mbe.2022313 doi: 10.3934/mbe.2022313
    [30] X. X. Du, X. L. Han, C. Y. Lei, Behavior analysis of a class of discrete-time dynamical system with capture rate, Mathematics, 10 (2022), 2410. http://dx.doi.org/10.3390/math10142410 doi: 10.3390/math10142410
    [31] Q. Din, Complexity and chaos control in a discrete-time prey-predator model, Commun. Nonlinear Sci. Numer. Simul., 49 (2017), 113–134. http://dx.doi.org/10.1016/j.cnsns.2017.01.025 doi: 10.1016/j.cnsns.2017.01.025
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1186) PDF downloads(84) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog